Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2019, Vol. 15 ›› Issue (05): 497 -503. doi: 10.3877/cma.j.issn.1673-5250.2019.05.004

Special Issue:

Forum

MicroRNA expression of hypoxic-ischemic encephalopahty in newborn

Limin Wang1, Jun Gu2, Chaobin Shen3,()   

  1. 1. Graduate School, Bengbu Medical College, Bengbu 233000, Anhui Province, China
    2. Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao-Tong University, Shanghai 200080, China
    3. Department of Pediatrics, Shanghai TCM-Integrated Hospital, Shanghai 200082, China
  • Received:2019-04-22 Revised:2019-09-09 Published:2019-10-01
  • Corresponding author: Chaobin Shen
  • About author:
    Corresponding author: Shen Chaobin, Email:
  • Supported by:
    Shanghai Key Project of Specific Disease Field in Integration of Traditional and Western Medicine by Shanghai Government Management Office of TCM(ZXBZ2013-003)

MicroRNA (miRNA) is a kind of highly conserved endogenous single stranded small molecule RNA. miRNA regulate gene expression by selective binding mRNA. Recent research shows that central nervous system includes a number of miRNA, and miRNA participates in many pathophysiological processes, such as the growth and development of nerve cells, repair of tissue damage, tumorigenesis, neurodegeneration and so on. This article attempts to expound miRNA profile of neonatal hypoxic-ischemia encephalopathy (HIE), and to explore the significance of miRNA-specific expression in the diagnosis and prognosis of neonatal HIE, in order to put forward new research ideas and methods for diagnosis and treatment of neonatal HIE.

[1]
Miska EA, Ferguson-Smith AC. Transgenerational inheritance: models and mechanisms of non-DNA sequence-based inheritance[J]. Science, 2016, 354(6308): 59-63.
[2]
Wang Y, Liu H, Sun Z. Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans[J]. Biol Rev Camb Philos Soc, 2017, 92(4): 2084-2111.
[3]
Lauressergues D, Couzigou JM, Clemente HS, et al. Primary transcripts of microRNAs encode regulatory peptides[J]. Nature, 2015, 520(7545): 90-93.
[4]
Li XQ, Zhang W, Xiao M, et al. MicroRNA-146b-5p protects oligodendrocyte precursor cells from oxygen/glucose deprivation-induced injury through regulating Keap1/Nrf2 signaling via targeting bromodomain-containing protein 4[J]. Biochem Biophys Res Commun, 2019, 513(4): 875-882.
[5]
Guo D, Barry L, Lin SS, et al. RNAa in action: from the exception to the norm[J]. RNA Biol, 2014, 11(10): 1221-1225.
[6]
Prata J, Santos SG, Almeida MI, et al. Bridging autism spectrum disorders and schizophrenia through inflammation and biomarkers-pre-clinical and clinical investigations[J]. J Neuroinflammation, 2017, 14(1): 179.
[7]
Mohr AM, Mott JL. Overview of microRNA biology[J]. Semin Liver Dis, 2015, 35(1): 3-11.
[8]
Ponnusamy V, Yip PK. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy[J]. Neuropharmacology, 2019, 149(1): 55-65.
[9]
Looney AM, Walsh BH, Moloney G, et al. Down-regulation of umbilical cord blood levels of miR-374a in neonatal hypoxic ischemic encephalopathy[J]. J Pediatr, 2015, 167(2): 269-273. e2.
[10]
Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals[J]. Lancet, 2016, 388(10063): 3027-3035.
[11]
Rahaman P, Del Bigio MR. Histology of brain trauma and hypoxia-ischemia[J]. Acad Forensic Pathol, 2018, 8(3): 539-554.
[12]
Qiao A, Khechaduri A, Kannan Mutharasan R, et al. MicroRNA-210 decreases heme levels by targeting ferrochelatase in cardiomyocytes[J]. J Am Heart Assoc, 2013, 2(2): e000121.
[13]
Ma Q, Dasgupta C, Li Y, et al. Inhibition of microRNA-210 provides neuroprotection in hypoxic-ischemic brain injury in neonatal rats[J]. Neurobiol Dis, 2016, 89: 202-212.
[14]
Qiu J, Zhou XY, Zhou XG, et al. MicroRNA-210 knockdown contributes to apoptosis caused by oxygen glucose deprivation in PC12 cells[J]. Mol Med Rep, 2015, 11(1): 719-723.
[15]
Radom-Aizik S, Zaldivar FP, Nance DM, et al. Growth inhibition and compensation in response to neonatal hypoxia in rats[J]. Pediatr Res, 2013, 74(2): 111-120.
[16]
Cicchillitti L, Di Stefano V, Isaia E, et al. Hypoxia-inducible factor 1-α induces miR-210 in normoxic differentiating myoblasts[J]. J Biol Chem, 2012, 287(53): 44761-44771.
[17]
Wang L, Ke J, Li Y, et al. Inhibition of miRNA-210 reverses nicotine-induced brain hypoxic-ischemic injury in neonatal rats[J]. Int J Biol Sci, 2017, 13(1): 76-84.
[18]
Pan Q, Zheng J, Du D, et al. MicroRNA-126 priming enhances functions of endothelial progenitor cells under physiological and hypoxic conditions and their therapeutic efficacy in cerebral ischemic damage[J]. Stem Cells Int, 2018, 2018: 2912347.
[19]
van Solingen C, Seghers L, Bijkerk R, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis[J]. J Cell Mol Med, 2009, 13(8A): 1577-1585.
[20]
Xi T, Jin F, Zhu Y, et al. MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt[J]. Biochem Biophys Res Commun, 2017, 494(1-2): 144-151.
[21]
彭彬,吴大玉,孙家兰,等. 急性脑梗死早期血中miRNAs水平与脑侧支循环建立的关系[J]. 中风与神经疾病杂志,2016, 33(2): 100-103.
[22]
Li WA, Efendizade A, Ding Y. The role of microRNA in neuronal inflammation and survival in the post ischemic brain: a review[J]. Neurol Res, 2017: 1-9. .
[23]
刘津溪,靳兰洁,周爽. 微小RNA-126与心脑血管疾病的研究进展[J]. 中华老年心脑血管病杂志,2017, 19(11): 1210-1212 .
[24]
Leung LY, Chan CP, Leung YK, et al. Comparison of miR-124-3p and miR-16 for early diagnosis of hemorrhagic and ischemic stroke[J]. Clin Chim Acta, 2014, 433: 139-144.
[25]
Sun Y, Luo ZM, Guo XM, et al. An updated role of microRNA-124 in central nervous system disorders: a review[J]. Front Cell Neurosci, 2015, 9: 193.
[26]
Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion[J]. Stroke, 2008, 39(3): 959-966.
[27]
Doeppner TR, Kaltwasser B, Sanchez-Mendoza EH, et al. Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3β inhibition-independent pathways[J]. J Cereb Blood Flow Metab, 2017, 37(3): 914-926.
[28]
Frederikse P, Nandanoor A, Kasinathan C. PTBP-dependent PSD-95 and CamKⅡα alternative splicing in the lens[J]. Mol Vis, 2014, 20: 1660-1667.
[29]
Pandey A, Singh P, Jauhari A, et al. Critical role of the miR-200 family in regulating differentiation and proliferation of neurons[J]. J Neurochem, 2015, 133(5): 640-652.
[30]
骆健明,欧楚耿,庄泽锐,等. miRNA-200a调控缺血缺氧后新生大鼠海马神经干细胞的增殖[J]. 泰山医学院学报,2015, 36(12): 1324-1326.
[31]
叶卉初,杨楠,杨丽君,等. miRNA-200b与髓鞘碱性蛋白在新生未成熟大鼠缺氧缺血性脑损伤过程中的相互关系[J]. 临床和实验医学杂志,2015, 14(7): 521-524.
[32]
Graham EM, Burd I, Everett AD, et al. Blood biomarkers for evaluation of perinatal encephalopathy[J]. Front Pharmacol, 2016, 7: 196.
[33]
Liu W, Chen X, Zhang Y. Effects of microRNA-21 and microRNA-24 inhibitors on neuronal apoptosis in ischemic stroke[J]. Am J Transl Res, 2016, 8(7): 3179-3187.
[34]
Aldaz B, Sagardoy A, Nogueira L, et al. Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells[J]. PLoS One, 2013, 8(10): e77098.
[35]
Quintavalle C, Donnarumma E, Iaboni M, et al. Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells[J]. Oncogene, 2013, 32(34): 4001-4008.
[36]
Liu Y, Nie H, Zhang K, et al. A feedback regulatory loop between HIF-1α and miR-21 in response to hypoxia in cardiomyocytes[J]. Febs Lett, 2014, 588(17): 3137-3146.
[37]
Li B, Concepcion K, Meng X, et al. Brain-immune interactions in perinatal hypoxic-ischemic brain injury[J]. Prog Neurobiol, 2017, 159: 50-68.
[38]
Galicia JC, Naqvi AR, Ko CC, et al. MiRNA-181a regulates Toll-like receptor agonist-induced inflammatory response in human fibroblasts[J]. Genes Immun, 2014, 15(5): 333-337.
[39]
Hutchison ER, Kawamoto EM, Taub DD, et al. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes[J]. Glia, 2013, 61(7): 1018-1028.
[40]
Zhang L, Li YJ, Wu XY, et al. MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4[J]. J Neurochem, 2015, 132(6): 713-723.
[41]
Ye Y, He X, Lu F, et al. A lincRNA-p21/miR-181 family feedback loop regulates microglial activation during systemic LPS- and MPTP- induced neuroinflammation[J]. Cell Death Dis, 2018, 9(8): 803.
[42]
Gilles ME, Slack FJ. Let-7 microRNA as a potential therapeutic target with implications for immunotherapy[J]. Expert Opin Ther Targets, 2018, 22(11): 929-939.
[43]
Shinohara Y, Yahagi K, Kawano M, et al. MiRNA profiling of bilateral rat hippocampal CA3 by deep sequencing[J]. Biochem Biophys Res Commun, 2011, 409(2): 293-298.
[44]
张旭,朱雯,何梦藻,等. miRNA表达谱在缺氧缺血性脑病新生儿脐带血中的变化及意义[J]. 浙江医学,2017, 39(16): 1333-1336, 1344.
[45]
Ponnusamy V, Kapellou O, Yip E, et al. A study of microRNAs from dried blood spots in newborns after perinatal asphyxia: a simple and feasible biosampling method[J]. Pediatr Res, 2016, 79(5): 799-805.
[46]
Di Y, Lei Y, Yu F, et al. MicroRNAs expression and function in cerebral ischemia reperfusion injury[J]. J Mol Neurosci, 2014, 53(2): 242-250.
[47]
Yin KJ, Deng Z, Hamblin M, et al. Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury[J]. J Neurosci, 2010, 30(18): 6398-6408.
[48]
Ma Q, Zhang L. Epigenetic programming of hypoxic-ischemic encephalopathy in response to fetal hypoxia[J]. Prog Neurobiol, 2015, 124: 28-48.
[49]
Xu CH, Liu Y, Xiao LM, et al. Silencing microRNA-221/222 cluster suppresses glioblastoma angiogenesis by suppressor of cytokine signaling-3-dependent JAK/STAT pathway[J]. J Cell Physiol, 2019, 234(12): 22272-22284.
[50]
Hromadnikova I, Kotlabova K, Ivankova K, et al. Profiling of cardiovascular and cerebrovascular disease associated microRNA expression in umbilical cord blood in gestational hypertension, preeclampsia and fetal growth restriction[J]. Int J Cardiol, 2017, 249: 402-409.
[51]
Song J, Ouyang Y, Che J, et al. Potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers for diseases[J]. Front Immunol, 2017, 8: 56.
[52]
Wang XH, Li LJ, Sun GX, et al. Expressions of miR-132, miR-134, and miR-485 in rat primary motor cortex during transhemispheric functional reorganization after contralateral seventh cervical spinal nerve root transfer following brachial plexus avulsion injuries[J]. Neuroreport, 2016, 27(1): 12-17.
[1] Qin Liu, Hanmin Liu, Liang Xie. Current status of research on the role of matrix metalloproteinases in the pathogenesis of childhood asthma[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 564-568.
[2] Yi Wei, Yuxi Zhou, Ye Yang, Xiufeng Ling, Chun Zhao. Current research status on roles of microRNA on endometrial receptivity[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 266-270.
[3] Shousen Wang, Shilong Fu, Liang Xian, Long Lin. Further understanding of the prevention mechanism and effects for intraoperative encephalocele by controlled decompression technique in patients with traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(05): 257-262.
[4] Dongyang Wu, Xiangdan Lin, Zuolin Shi, Yulong Zhao, Zhen Wang, An'guo Wen, Xin Ji, Juzhi Li, Mingguang Zhao. Application value of NF-L,NLRP3,and S100B proteins in assessing the severity and prognosis of traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(05): 279-285.
[5] Dongsheng Pan, Guobiao Liang. Latest developments and future trends in the treatment of traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(04): 193-197.
[6] Liangfu Zhou. Diagnosis and treatment of blast-related traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(03): 129-131.
[7] Shenghao Zhang, Jie Zhou, Pengfei Yao, Changdong Li, Xiaodong Qu, Yaqiang Nan, Li Cao. Role and mechanism of celastrol in secondary injury after traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(03): 132-140.
[8] Changchun Cong, Chunlin Wang, Xiaogang Wu, Jinbiao Wang, Fubin Zhang, Lei Sun, Li Wang. Risk factors and etiology of ventilator-associated pneumonia in patients with severe traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(03): 151-157.
[9] Jinpeng Mao, Zhihe Tao, Qi Liu, Yong Wang, Ming Zhou, Jinsong Chen, Shaobin Tian. Experience of successful conservative management of traumatic large epidural hematoma: a report of 10 cases[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(03): 164-168.
[10] Qiang Xin, Wenhao Zhu, Chuan He, Wenchen Li, Bo Chen, Haifeng Wang. Effect of glial cell-derived exosomal miRNAs on neuroinflammation after traumatic brain injury[J]. Chinese Journal of Neurotraumatic Surgery(Electronic Edition), 2024, 10(03): 169-173.
[11] Ruhai Wang, Shen Wang, Min Zhang, Chun Li, Chao Han, Qiang Yu, Haicheng Hu, Xizhen Li. Analysis of influencing factors of short-term mortality risk in patients with severe traumatic brain injury after decompressive craniectomy[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(05): 285-291.
[12] Nan Si, Hongtao Sun. Research progress on risk factors of renal dysfunction after traumatic brain injury[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(05): 300-305.
[13] Zhiheng Hu, Hongbo Ren, Zhiyuan Song, Yungang Zhao, Xiaozheng Han. Relationship between serum sTIM-3 and its ligand Gal-9, CEACAM-1 and the degree of brain injury and prognosis in patients with traumatic brain injury[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(04): 201-207.
[14] Yan Wang, Haiqian Liang, Shanshan Guo. Research advances in role of inflammasome in traumatic brain injury[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(03): 177-181.
[15] Fangkun Jing, Yanfeng Li. Current status and prospect of surgical treatment of chronic disturbance of consciousness after traumatic brain injury[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(03): 129-132.
Viewed
Full text


Abstract