[1] |
Haskill S, Peace A, Morris J, et al. Identification of three related human GRO genes encoding cytokine functions [J]. Proc Natl Acad Sci USA, 1990, 87(19): 7732-7736.
|
[2] |
Gulati K, Gangele K, Agarwal N, et al. Molecular cloning and biophysical characterization of CXCL3 chemokine [J]. Int J Biol Macromol, 2018, 107(Pt A): 575-584.
|
[3] |
Russo RC, Garcia CC, Teixeira MM, et al. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases [J]. Expert Rev Clin Immunol, 2014, 10(5): 593-619.
|
[4] |
Lyall F. Mechanisms regulating cytotrophoblast invasion in normal pregnancy and pre-eclampsia [J]. Aust N Z J Obstet Gynaecol, 2006, 46(4): 266-273.
|
[5] |
Pearce WJ. Multifunctional angiogenic factors: add GnRH to the list. Focus on " Gonadotropin-releasing hormone-regulated chemokine expression in human placentation" [J]. Am J Physiol Cell Physiol, 2009, 297(1): C4-C5.
|
[6] |
David Dong ZM, Aplin AC, Nicosia RF. Regulation of angiogenesis by macrophages, dendritic cells, and circulating myelomonocytic cells [J]. Curr Pharm Des, 2009, 15(4): 365-379.
|
[7] |
Wallace AE, Fraser R, Gurung S, et al. Increased angiogenic factor secretion by decidual natural killer cells from pregnancies with high uterine artery resistance alters trophoblast function [J]. Hum Reprod, 2014, 29(4): 652-660.
|
[8] |
Woidacki K, Meyer N, Schumacher A, et al. Transfer of regulatory T cells into abortion-prone mice promotes the expansion of uterine mast cells and normalizes early pregnancy angiogenesis [J]. Sci Rep, 2015, 5: 13938.
|
[9] |
Cavanagh PC, Dunk C, Pampillo M, et al. Gonadotropin-releasing hormone-regulated chemokine expression in human placentation [J]. Am J Physiol Cell Physiol, 2009, 297(1): C17-C27.
|
[10] |
Naicker T, Khedun SM, Moodley J, et al. Quantitative analysis of trophoblast invasion in preeclampsia [J]. Acta Obstet Gynecol Scand, 2003, 82(8): 722-729.
|
[11] |
Gui S, Ni S, Jia J, Gong Y, et al. Inconformity of CXCL3 plasma level and placenta expression in preeclampsia and its effect on trophoblast viability and invasion [J]. PLoS One, 2014, 9(12): e114408.
|
[12] |
Alasztics B, Kukor Z, Pánczél Z, et al. The pathophysiology of preeclampsia in view of the two-stage model [J]. Orv Hetil, 2012, 153(30): 1167-1176.
|
[13] |
Wright A, Wright D, Syngelaki A, et al. Two-stage screening for preterm preeclampsia at 11-13 weeks′ gestation [J]. Am J Obstet Gynecol, 2019, 220(2): 197. el-197. ell.
|
[14] |
Hassanian SM, Dinarvand P, Rezaie AR. Adenosine regulates the proinflammatory signaling function of thrombin in endothelial cells [J]. J Cell Physiol, 2014, 229(9): 1292-1300.
|
[15] |
Huang SJ, Schatz F, Masch R, et al. Regulation of chemokine production in response to pro-inflammatory cytokines in first trimester decidual cells [J]. J Reprod Immunol, 2006, 72(1-2): 60-73.
|
[16] |
Chevillard G, Derjuga A, Devost D, et al. Identification of interleukin-1beta regulated genes in uterine smooth muscle cells [J]. Reproduction, 2007, 134(6): 811-22.
|
[17] |
Laudanski P, Lemancewicz A, Kuc P, et al. Chemokines profiling of patients with preterm birth [J]. Mediators Inflamm, 2014, 2014: 185758.
|
[18] |
Simhan HN, Caritis SN, Krohn MA, et al. Decreased cervical proinflammatory cytokines permit subsequent upper genital tract infection during pregnancy [J]. Am J Obstet Gynecol, 2003, 189(2): 560-567.
|
[19] |
Martin LF, Moco NP, de Lima MD, et al. Histologic chorioamnionitis does not modulate the oxidative stress and antioxidant status in pregnancies complicated by spontadelivery [J]. BMC Pregnancy Childbirth, 2017, 17(1): 376.
|
[20] |
Maki Y, Fujisaki M, Sato Y, et al. Candida chorioamnionitis leads to preterm birth and adverse fetal-neonatal outcome [J]. Infect Dis Obstet Gynecol, 2017, 2017: 9060138.
|
[21] |
Preston-Martin S, Pike MC, Ross RK, et al. Increased cell division as a cause of human cancer [J]. Cancer Res, 1990, 50(23): 7415-7421.
|
[22] |
See AL, Chong PK, Lu SY, et al. CXCL3 is a potential target for breast cancer metastasis [J]. Curr Cancer Drug Targets, 2014, 14(3): 294-309.
|
[23] |
Gui SL, Teng LC, Wang SQ, et al. Overexpression of CXCL3 can enhance the oncogenic potential of prostate cancer [J]. Int Urol Nephrol, 2016, 48(5): 701-709.
|
[24] |
Subimerb C, Wongkham C, Khuntikeo N, et al. Transcriptional profiles of peripheral blood leukocytes identify patients with cholangiocarcinoma and predict outcome [J]. Asian Pac J Cancer Prev, 2014, 15(10): 4217-4224.
|
[25] |
Farioli-Vecchioli S, Tanori M, Micheli L, et al. Inhibition of medulloblastoma tumorigenesis by the antiproliferative and pro-differentiative gene PC3 [J]. FASEB J, 2007, 21(9): 2215-2225.
|
[26] |
Farioli-Vecchioli S, Cinà I, Ceccarelli M, et al. Tis21 knock-out enhances the frequency of medulloblastoma in patched1 heterozygous mice by inhibiting the Cxcl3-dependent migration of cerebellar neurons [J]. J Neurosci, 2012, 32(44): 15547-15564.
|
[27] |
Kessler JD, Hasegawa H, Brun SN, et al. N-myc alters the fate of preneoplastic cells in a mouse model of medulloblastoma [J]. Genes Dev, 2009, 23(2): 157-170.
|
[28] |
Ceccarelli M, Micheli L, Tirone F. Suppression of medulloblastoma lesions by forced migration of preneoplastic precursor cells with intracerebellar administration of the chemokine Cxcl3 [J]. Front Pharmacol, 2016, 7: 484.
|
[29] |
Delahanty RJ, Xiang YB, Spurdle A, et al. Polymorphisms in inflammation pathway genes and endometrial cancer risk [J]. Cancer Epidemiol Biomarkers Prev, 2013, 22(2): 216-223.
|
[30] |
Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome [J]. Science, 2006, 313(5795): 1960-1964.
|
[31] |
McLean MH, Murray GI, Stewart KN, et al. The inflammatory microenvironment in colorectal neoplasia [J]. PLoS One, 2011, 6(1): e15366.
|
[32] |
Kogan-Sakin I, Cohen M, Paland N, et al. Prostate stromal cells produce CXCL-1, CXCL-2, CXCL-3 and IL-8 in response to epithelia-secreted IL-1 [J]. Carcinogenesis, 2009, 30(4): 698-705.
|
[33] |
Bièche I, Chavey C, Andrieu C, et al. CXC chemokines located in the 4q21 region are up-regulated in breast cancer [J]. Endocr Relat Cancer, 2007, 14(4): 1039-1052.
|
[34] |
Karagiannis GS, Saraon P, Jarvi KA, et al. Proteomic signatures of angiogenesis in androgen-independent prostate cancer [J]. Prostate, 2014, 74(3): 260-72.
|
[35] |
Lee YS, Won KJ, Park SW, et al. Mesenchymal stem cells regulate the proliferation of T cells via the growth-related oncogene/CXC chemokine receptor, CXCR2 [J]. Cell Immunol, 2012, 279(1): 1-11.
|
[36] |
Jin L, Li ZF, Wang DK, et al. Molecular and functional characterization of tumor-induced factor (TIF): hamster homolog of CXCL3 (GROγ) displays tumor suppressive activity [J]. Cytokine, 2018, 102: 62-75.
|
[37] |
Zebrack JS, Anderson JL. The role of inflammation and infection in the pathogenesis and evolution of coronary artery disease [J]. Curr Cardiol Rep, 2002, 4(4): 278-288.
|
[38] |
Zhang L, Li J, Liang A, et al. Immune-related chemotactic factors were found in acute coronary syndromes by bioinformatics [J]. Mol Biol Rep, 2014, 41(7): 4389-4395.
|
[39] |
Kusuyama J, Komorizono A, Bandow K, et al. CXCL3 positively regulates adipogenic differentiation [J]. J Lipid Res, 2016, 57(10): 1806-1820.
|
[40] |
Muñoz A, Costa M. Nutritionally mediated oxidative stress and inflammation [J]. Oxid Med Cell Longev, 2013, 2013: 610950.
|
[41] |
Martin-Fuentes P, Civeira F, Solanas-Barca M, et al. Overexpression of the CXCL3 gene in response to oxidized low-density lipoprotein is associated with the presence of tendon xanthomas in familial hypercholesterolemia [J]. Biochem Cell Biol, 2009, 87(3): 493-498.
|
[42] |
Leonard DA, Merhige ME, Williams BA, et al. Elevated expression of the interleukin-8 receptors CXCR1 and CXCR2 in peripheral blood cells in obstructive coronary artery disease [J]. Coron Artery Dis, 2011, 22(7): 491-496.
|
[43] |
Athanassopoulos P, Vaessen LM, Balk AH, et al. Altered chemokine receptor profile on circulating leukocytes in human heart failure [J]. Cell Biochem Biophys, 2006, 44(1): 83-101.
|
[44] |
Han X. Constitutively active chemokine CXC receptors [J]. Adv Pharmacol, 2014, 70: 265-301.
|
[45] |
Tarzami ST, Cheng R, Miao W, et al. Chemokine expression in myocardial ischemia: MIP-2 dependent MCP-1 expression protects cardiomyocytes from cell death [J]. J Mol Cell Cardiol, 2002, 34(2): 209-221.
|
[46] |
Tarzami ST, Miao W, Mani K, et al. Opposing effects mediated by the chemokine receptor CXCR2 on myocardial ischemia-reperfusion injury: recruitment of potentially damaging neutrophils and direct myocardial protection [J]. Circulation, 2003, 108(19): 2387-2392.
|
[47] |
Liehn EA, Kanzler I, Konschalla S, et al. Compartmentalized protective and detrimental effects of endogenous macrophage migration-inhibitory factor mediated by CXCR2 in a mouse model of myocardial ischemia/reperfusion [J]. Arterioscler Thromb Vasc Biol, 2013, 33(9): 2180-2186.
|
[48] |
Wang J, Zhou C, Liu L, et al. Clinical effect of cardiac shock wave therapy on patients with ischaemic heart disease: a systematic review and Meta-analysis [J]. Eur J Clin Invest, 2015, 45(12): 1270-1285.
|
[49] |
Wang W, Liu H, Song M, et al. Clinical effect of cardiac shock wave therapy on myocardial ischemia in patients with ischemic heart failure [J]. J Cardiovasc Pharmacol Ther, 2016, 21(4): 381-387.
|
[50] |
Guilherme L, Kalil J. Rheumatic heart disease: molecules involved in valve tissue inflammation leading to the autoimmune process and anti-S. pyogenes vaccine [J]. Front Immunol, 2013, 4: 352.
|
[51] |
Clancy RM, Markham AJ, Jackson T, et al. Cardiac fibroblast transcriptome analyses support a role for interferogenic, profibrotic, and inflammatory genes in anti-SSA/Ro-associated congenital heart block [J]. Am J Physiol Heart Circ Physiol, 2017, 313(3): H631-H640.
|
[52] |
Ramos-Barbón D, Fraga-Iriso R, Brienza NS, et al. T Cells localize with proliferating smooth muscle alpha-actin+ cell compartments in asthma [J]. Am J Respir Crit Care Med, 2010, 182(3): 317-324.
|
[53] |
Chesné J, Braza F, Mahay G, et al. IL-17 in severe asthma. Where do we stand? [J]. Am J Respir Crit Care Med, 2014, 190(10): 1094-1101.
|
[54] |
Al-Alwan LA, Chang Y, Baglole CJ, et al. Autocrine-regulated airway smooth muscle cell migration is dependent on IL-17-induced growth-related oncogenes [J]. J Allergy Clin Immunol, 2012, 130(4): 977. e6-985. e6.
|
[55] |
Goleva E, Hauk PJ, Hall CF, et al. Corticosteroid-resistant asthma is associated with classical antimicrobial activation of airway macrophages [J]. J Allergy Clin Immunol, 2008, 122(3): 550. e3-559. e3.
|
[56] |
Al-Alwan LA, Chang Y, Mogas A, et al. Differential roles of CXCL2 and CXCL3 and their receptors in regulating normal and asthmatic airway smooth muscle cell migration [J]. J Immunol, 2013, 191(5): 2731-2741.
|
[57] |
Ooi AT, Ram S, Kuo A, et al. Identification of an interleukin 13-induced epigenetic signature in allergic airway inflammation [J]. Am J Transl Res, 2012, 4(2): 219-228.
|
[58] |
da Silva Antunes R, Madge L, Soroosh P, et al. The TNF family molecules LIGHT and lymphotoxin αβ induce a distinct steroid-resistant inflammatory phenotype in human lung epithelial cells [J]. J Immunol, 2015, 195(5): 2429-2441.
|
[59] |
Singhania A, Wallington JC, Smith CG, et al. Multitissue transcriptomics delineates the diversity of airway T cell functions in asthma [J]. Am J Respir Cell Mol Biol, 2018, 58(2): 261-270.
|
[60] |
Manzer R, Wang J, Nishina K, et al. Alveolar epithelial cells secrete chemokines in response to IL-1beta and lipopolysaccharide but not to ozone [J]. Am J Respir Cell Mol Biol, 2006, 34(2): 158-166.
|
[61] |
Li Y, Huang J, Foley NM, et al. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration [J]. Sci Rep, 2016, 6: 31284.
|
[62] |
Stevenson CS, Coote K, Webster R, et al. Characterization of cigarette smoke-induced inflammatory and mucus hypersecretory changes in rat lung and the role of CXCR2 ligands in mediating this effect [J]. Am J Physiol Lung Cell Mol Physiol, 2005, 288(3): L514-L522.
|
[63] |
Wang G, Mohammadtursun N, Sun J, et al. Establishment and evaluation of a rat model of sidestream cigarette smoke-induced chronic obstructive pulmonary disease [J]. Front Physiol, 2018, 9: 58.
|
[64] |
Boppana NB, Devarajan A, Gopal K, et al. Blockade of CXCR2 signalling: a potential therapeutic target for preventing neutrophil-mediated inflammatory diseases [J]. Exp Biol Med (Maywood), 2014, 239(5): 509-518.
|