切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2025, Vol. 21 ›› Issue (01) : 44 -53. doi: 10.3877/cma.j.issn.1673-5250.2025.01.006

妇儿影像学研究专辑

基于视觉转换器深度学习算法的磁共振弥散张量成像孤独症谱系障碍分类模型研究
齐琦1, 倪立桐1, 王俊逸2, 张蔚2, 朱熹2, 李逸杰2, 曹豆豆1, 段旭君2, 王懿3, 张帆2, 李世俊4,()   
  1. 1. 中国人民解放军总医院研究生院,北京 100853
    2. 电子科技大学,成都 611731
    3. 中国人民解放军总医院第一医学中心口腔科,北京 100853
    4. 中国人民解放军总医院第一医学中心放射诊断科,北京 100853
  • 收稿日期:2025-01-02 修回日期:2025-01-24 出版日期:2025-02-01
  • 通信作者: 李世俊
  • 基金资助:
    首都卫生发展科研专项项目(首发2024-2-5024)国家重点研发计划“国家质量基础设施体系”重点专项项目(2022YFC2409404)

Research of diffusion tensor imaging autism spectrum disorder classification model based on the visual transformer deep learning algorithm

Qi Qi1, Litong Ni1, Junyi Wang2, Wei Zhang2, Xi Zhu2, Yijie Li2, Doudou Cao1, Xujun Duan2, Yi Wang3, Fan Zhang2, Shijun Li4,()   

  1. 1. Graduate School,Chinese PLA General Hospital,Beijing 100853,China
    2. University of Electronic Science and Technology of China,Chengdu 611731,Sichuan Province,China
    3. Department of Stomatology,First Medical Center,Chinese PLA General Hospital,Beijing 100853,China
    4. Department of Radiology,First Medical Center,Chinese PLA General Hospital,Beijing 100853,China
  • Received:2025-01-02 Revised:2025-01-24 Published:2025-02-01
  • Corresponding author: Shijun Li
引用本文:

齐琦, 倪立桐, 王俊逸, 张蔚, 朱熹, 李逸杰, 曹豆豆, 段旭君, 王懿, 张帆, 李世俊. 基于视觉转换器深度学习算法的磁共振弥散张量成像孤独症谱系障碍分类模型研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 44-53.

Qi Qi, Litong Ni, Junyi Wang, Wei Zhang, Xi Zhu, Yijie Li, Doudou Cao, Xujun Duan, Yi Wang, Fan Zhang, Shijun Li. Research of diffusion tensor imaging autism spectrum disorder classification model based on the visual transformer deep learning algorithm[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2025, 21(01): 44-53.

目的

探讨基于视觉转换器(ViT)深度学习算法磁共振弥散张量成像(DTI)的孤独症谱系障碍(ASD)分类模型(以下简称为“ASD 分类模型”),对不同年龄段ASD 患儿的临床筛查效能。

方法

选择2017年1月至2023年7月就诊于中国人民解放军总医院及成都市妇女儿童中心医院的265例ASD 患儿(0~12 岁)为研究对象,纳入ASD 组(n=265)。选择同期在这2 家医院就诊的158例典型发育(TD)儿童(0~12岁)为对照,纳入对照组(n=158)。收集2组受试儿的颅脑DTI图像,对其34与64方向进行数据融合处理,随后基于双张量无迹卡尔曼滤波(t UKF)技术,对其全脑白质纤维进行示踪。基于谱嵌入技术生成2组受试儿纤维级TractoEmbedding图像,采用基于ViT 深度学习算法,对数据扩充后的TractoEmbedding图像进行分类,建立ASD 分类模型,并分析该模型对不同年龄段(0~2岁、≥2~4岁、≥4~6岁、≥6~8岁、≥8~10岁、≥10~12岁)受试儿的ASD 筛查效能,包括准确率、特异度、敏感度及曲线下面积(AUC)。本研究通过中国人民解放军总医院医学伦理委员会审批(批准文号:S2022-646-01),与所有受试儿监护人签署临床研究知情同意书。ASD 组≥2~4岁、≥4~6岁、≥6~8岁、≥8~10岁、≥10~12岁患儿年龄分别与对照组儿童比较,差异均无统计学意义(P >0.05)。

结果

本研究基于ViT 深度学习算法,通过对ASD 患儿与TD 儿童纤维级TractoEmbedding图像的训练与验证后,建立5 个ASD 分类模型(模型1~5)。其中,模型3对ASD 患儿的筛查准确率最高,为0.791。采用模型3对不同年龄段受试儿ASD 筛查的准确率、特异度、敏感度及AUC值分别如下。≥4~5岁:0.966、0.864、1.000及0.961;≥5~6岁:0.891、0.842、0.926 及0.961;≥6~7 岁:0.958、0.903、1.000 及0.992;≥7~8 岁:0.893、0.850、1.000及0.956。

结论

本研究建立的基于ViT 深度学习算法DTI 的ASD 分类模型中,模型3对≥4~5岁、≥5~6岁、≥6~7 岁、≥7~8 岁受试儿ASD 筛查的敏感度、特异度、准确率、AUC 值均较高。

Objective

To explore the clinical screening efficacy of children with autism spectrum disorder(ASD)in different ages by ASD classification model based on the visual transformer(ViT)deep learning algorithm diffusion tensor imaging (DTI) (hereinafter referred to as the"ASD classification model").

Methods

A total of 265 ASD children aged 0-12 years who visited the Chinese PLA General Hospital and the Chengdu Women's and Children's Central Hospital from January 2017 to July 2023 were selected into ASD group,And other 158 typical development(TD)children aged 0-12 years old who visited the above two hospitals during the same period were included in the control group.Brain DTIimages of all children were collected,and the DTIimage data of 34 and 64 directions of children from the two hospitals were harmonized,and then whole brain white matter fibers of the children were traced based on two-tensor unscented Kalman filter (t UKF)technology.Based on spectral embedding technology,fiber level TractoEmbedding images of the children were generated.Then augmented TractoEmbedding images were classified using ViT deep learning algorithm,and ASD classification model was established,and the screening performance of the model for ASD with different ages(0-2 years old,≥2-4 years old,≥4-6 years old,≥6-8 years old,≥8-10 years old,≥10-12 years old)was analyzed,including accuracy,specificity,sensitivity,and area under the curve(AUC).This study was approved by the Medical Ethics Committee of Chinese PLA General Hospital(Approval No.S2022-646-01).All guardians of the enrolled children signed the informed consent form for clinical study.There was no statistically s ignificant difference in the age of children aged≥2-4 years,≥4-6 years,≥6-8 years,≥8-10 years,and≥10-12 years between ASD group and control group (P>0.05).

Results

Based on the ViT deep learning algorithm,this study established five ASD classification models (Models 1-5)by training and validating fiber level DTI TractoEmbedding images of ASD and TD children.Among them,Model 3 had the highest screening accuracy for ASD at 0.791.The results of screening performance in children of different ages by Model 3 showed that the accuracy,specificity,sensitivity,and AUC values of the model for ASD screening in children aged≥4-5 years,≥5-6 years,≥6-7 years,and≥7-8 years were as follows.≥4-5 years old:0.966,0.864,1.000,0.961;≥5-6 years old:0.891,0.842,0.926,0.961;≥6-7 years old:0.958,0.903,1.000,0.992;≥7-8 years old:0.893,0.850,1.000,0.956.

Conclusions

The ASD classification model 3 based on ViT deep learning algorithm DTI established in this study has high sensitivity,specificity,accuracy,and AUC values for ASD screening in children aged≥4-5 years,≥5-6 years,≥6-7 years,and≥7-8 years.

图1 基于ViT 深度学习算法DTI的ASD 分类模型建立与验证流程图 注:ViT 为视觉转换器,DTI为弥散张量成像,ASD 为孤独症谱系障碍。t UKF为双张量无迹卡尔曼滤波,Deep WMA 为深层白质分析,FA 为各向异性分数。ORG 图谱为O'Donnell研究组纤维聚类白质图谱(O'Donnell Research Group Fiber Clustering White Matter Atlas)。TractoEmbedding图像为本研究基于t UKF技术对受试儿脑白质纤维示踪后,应用谱嵌入技术降维生成的二维图像
表1 ASD 组与对照组不同年龄段受试儿的年龄与性别比较
图2 基于ViT 深度学习算法DTI的ASD 分类模型3的TractoEmbedding图像分类注意力图(图2A~2C:TractoEmbedding图像嵌入分辨率分别为320、160、80的左脑TractoEmbedding图像分类注意力图;图2D~2F:TractoEmbedding图像嵌入分辨率分别为320、160、80的右脑TractoEmbedding图像分类注意力图;图2H~2J:TractoEmbedding图像嵌入分辨率分别为320、160、80的左、右脑联合区TractoEmbedding图像分类注意力图) 注:橙色所示为ASD分类模型3对受试儿TractoEmbedding图像的关注区域。ViT 为视觉转换器,DTI为弥散张量成像,ASD 为孤独症谱系障碍。TractoEmbedding图像为本研究基于双张量无迹卡尔曼滤波技术对受试儿脑白质纤维示踪后,应用谱嵌入技术降维生成的二维图像
图3 5个基于ViT 深度学习算法DTI 的ASD 分类模型中训练集与验证集受试儿的年龄、性别分布图(图3A:模型1中训练集与验证集受试儿的年龄、性别分布图;图3B:模型2中训练集与验证集受试儿的年龄、性别分布图;图3C:模型3中训练集与验证集受试儿的年龄、性别分布图;图3D:模型4中训练集与验证集受试儿的年龄、性别分布图;图3E:模型5中训练集与验证集受试儿的年龄、性别分布图) 注:ViT 为视觉转换器,DTI为弥散张量成像,ASD为孤独症谱系障碍
表2 ASD 分类模型3对不同年龄段受试儿ASD 筛查效能比较
表3 ASD 分类模型3对进一步细分的不同年龄段(年龄间隔为1岁)受试儿ASD 筛查效能比较
[1]
郝伟,陆林.精神病学[M].8版.北京:人民卫生出版社,2018:228-231.Hao W,Lu L.Psychiatry[M].8th.Beijing:People's Medical Publishing House,2018:228-231.
[2]
Baio J,Wiggins L,Christensen DL,et al.Prevalence of autism spectrum disorder among children aged 8 yearsautism and developmental disabilities monitoring network,11 sites,United States,2014[J].MMWR Surveill Summ,2018,67(6):1-23.DOI:10.15585/mmwr.ss6706a1.
[3]
Khachadourian V,Mahjani B,Sandin S,et al.Comorbidities in autism spectrum disorder and their etiologies[J].Transl Psychiatry,2023,13(1):71.DOI:10.1038/s41398-023-02374-w.
[4]
Li SJ,Wang Y,Qian L,et al.Alterations of white matter connectivity in preschool children with autism spectrum disorder[J].Radiology,2018,288(1):209-217.DOI:10.1148/radiol.2018170059.
[5]
Yeh CH,Tseng RY,Ni HC,et al.White matter microstructural and morphometric alterations in autism:implications for intellectual capabilities[J].Mol Autism,2022,13(1):21.DOI:10.1186/s13229-022-00499-1.
[6]
Wolff JJ,Gu H,Gerig G,et al.Differences in white matter fiber tract development present from 6 to 24 months in infants with autism[J].Am J Psychiatry,2012,169(6):589-600.DOI:10.1176/appi.ajp.2011.11091447.
[7]
Han K,Wang Y,Chen H,et al.A survey on vision transformer[J].IEEE Trans Pattern Anal Mach Intell,2023,45(1):87-110.DOI:10.1109/TPAMI.2022.315 2247.
[8]
Thompson A,Shahidiani A,Fritz A,et al.Age-related differences in white matter diffusion measures in autism spectrum condition[J].Mol Autism,2020,11(1):36.DOI:10.1186/s13229-020-00325-6.
[9]
López-Vicente M,Lamballais S,Louwen S,et al.White matter microstructure correlates of age,sex,handedness and motor ability in a population-based sample of 3031 school-age children[J].Neuroimage,2021,227:117643.DOI:10.1016/j.neuroimage.2020.117643.
[10]
毕小彬,范晓壮,米文丽,等.ICD-11和DSM-5中孤独症谱系障碍诊断标准比较[J].国际精神病学杂志,2021,48(2):193-196.Bi XB,Fan XZ,Mi WL,et al.A comparative analysis of diagnostic criteria for autism spectrum disorder in ICD-11 and DSM-5[J].J Int Psychiat,2021,48(2):193-196.
[11]
Oguz I,Farzinfar M,Matsui J,et al.DTIPrep:quality control of diffusion-weighted images[J].Front Neuroinform,2014,8:4.DOI:10.3389/fninf.2014.00004.
[12]
Mirzaalian H,Ning L,Savadjiev P,et al.Multi-site harmonization of diffusion MRI data in a registration framework[J].Brain Imaging Behav,2018,12(1):284-295.DOI:10.1007/s11682-016-9670-y.
[13]
Malcolm JG,Shenton ME,Rathi Y.Filtered multitensor tractography[J].IEEE Trans Med Imaging,2010,29(9):1664-1675.DOI:10.1109/TMI.2010.2048121.
[14]
Norton I,Essayed WI,Zhang F,et al.Slicer DMRI:open source diffusion mri software for brain cancer research[J].Cancer Res,2017,77(21):e101-e103.DOI:10.1158/0008-5472.CAN-17-0332.
[15]
Zhang F,Wu Y,Norton I,et al.An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan[J].Neuroimage,2018,179:429-447.DOI:10.1016/j.neuroimage.2018.06.027.
[16]
O'Donnell LJ,Wells WM,Golby AJ,et al.Unbiased groupwise registration of white matter tractography[J].Med Image Comput Comput Assist Interv,2012,15(Pt 3):123-130.DOI:10.1007/978-3-642-33454-2_16.
[17]
O'Donnell LJ,Westin CF.Automatic tractography segmentation using a high-dimensional white matter atlas[J].IEEE Trans Med Imaging,2007,26(11):1562-1575.DOI:10.1109/TMI.2007.906785.
[18]
Johnston MV,Nishimura A,Harum K,et al.Sculpting the developing brain[J].Adv Pediatr,2001,48:1-38.
[19]
Johnston MV.Clinical disorders of brain plasticity[J].Brain Dev,2004,26(2):73-80.DOI:10.1016/S0387-7604(03)00102-5.
[20]
Di Martino A,O'Connor D,Chen B,et al.Enhancing studies of the connectome in autism using the autism brain imaging data exchangeⅡ[J].Scientific Data,2017,4:170010.DOI:10.1038/sdata.2017.10.
[21]
Helmy E,Elnakib A,El Nakieb Y,et al.Role of artificial intelligence for autism diagnosis using dti and fmri:a survey[J].Biomedicines,2023,11(7):1858.DOI:10.3390/biomedicines11071858.
[22]
Payabvash S,Palacios EM,Owen JP,et al.White matter connectome edge density in children with autism spectrum disorders:potential imaging biomarkers using machinelearning models[J].Brain Connect,2019,9(2):209-220.DOI:10.1089/brain.2018.0658.
[23]
Cetin Karayumak S,Bouix S,Ning L,et al.Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters[J].Neuroimage,2019,184:1800-200.DOI:10.1016/j.neuroimage.2018.08.073.
[24]
Malcolm JG,Michailovich O,Bouix S,et al.A filtered approach to neural tractography using the Watson directional function[J].Med Image Anal,2010,14(1):58-69.DOI:10.1016/j.media.2009.10.003.
[25]
Baumgartner C,Michailovich O,Levitt J,et al.A unified tractography framework for comparing diffusion models on clinical scans[C]//CDMRI-workshop(MICCAI'12),2012.
[26]
He J,Zhang F,Xie G,et al.Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI[J].Hum Brain Mapp,2021,42(12):3887-3904.DOI:10.1002/hbm.25472.
[27]
Vercruysse D,Christiaens D,Maes F,et al.Fiber bundle segmentation using spectral embedding and supervised learning[C]//O'Donnell L,Nedjati-Gilani G,Rathi Y,et al.Computational diffusion MRI.Mathematics and visualization.Berlin:Springer,2014,39:103-114.DOI:10.1007/978-3-319-11182-7_10.
[28]
Khan A,Rauf Z,Sohail A,et al.A survey of the vision transformers and their CNN-transformer based variants[J].Artif Intell Rev,2023,56.DOI:10.1007/s10462-023-10595-0.
[29]
Dosovitskiy A,Beyer L,Kolesnikov A,et al.An image is worth 16x16 words:transformers for image recognition at scale [C ]//International Conference on Learning Representations,2021.
[30]
Calderoni S.Sex/gender differences in children with autism spectrum disorder:A brief overview on epidemiology,symptom profile,and neuroanatomy[J].J Neurosci Res,2023,101(5):739-750.DOI:10.1002/jnr.25000.
[31]
Randall M,Egberts KJ,Samtani A,et al.Diagnostic tests for autism spectrum disorder(ASD)in preschool children[J].Cochrane Database Syst Rev,2018,7(7):CD009044.DOI:10.1002/14651858.CD009044.pub2.
[1] 高梅娟, 董素贞. 多模态影像学新技术在儿童腹部常见恶性肿瘤中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 15-20.
[2] 倪立桐, 李世俊. 学龄前孤独症谱系障碍患儿杏仁核体积及白质纤维连接研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 29-36.
[3] 闫淯淳, 袁新宇, 徐兆慧, 朱春梅, 杨洋. 肺炎支原体肺炎伴支气管充气征患儿采取支气管肺泡灌洗术治疗决策因素分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 54-60.
[4] 牛田力, 牛春艳, 赵鹏飞, 李世俊. 动脉自旋标记技术对儿童毛细胞型星形细胞瘤与血管母细胞瘤及髓母细胞瘤脑血流量检测的临床价值[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 61-66.
[5] 赵华善, 荣维国, 翟允鹏, 郭锐, 许洪修, 黄赛, 沈刚, 张士松. 儿童急性阑尾炎术后阑尾粪石残留致脐部切口感染并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 92-97.
[6] 葛海霞, 陆惠钢, 周婷婷, 王伟, 陈婷, 金忠芹. Gitelman综合征患儿临床表现及遗传学特征研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 98-105.
[7] 王利红, 王正, 李学伟. 肺炎支原体脑炎患儿伴双眼复视1例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 106-113.
[8] 孙瑜博, 陈瑞, 翟亦晖, 汤梁峰, 张致庆, 王春燕, 耿红全, 沈茜, 刘锋, 徐虹. 合并膀胱功能障碍儿童肾移植受者疗效评估[J/OL]. 中华移植杂志(电子版), 2025, 19(01): 2-8.
[9] 姜梦婕, 黄淑娟, 裴瑜馨, 容丽萍, 许园园, 林知朗, 丘原全, 刘龙山, 蒋小云, 陈丽植. 儿童复发性移植肾肾病临床特点及诊治[J/OL]. 中华移植杂志(电子版), 2025, 19(01): 16-21.
[10] 曾锦华, 韩新利, 徐虹, 翟亦晖, 刘锋, 陈瑞, 方晓燕, 张致庆, 王春燕, 陈径, 沈茜. 儿童肾移植受者移植后淋巴组织增生性疾病临床特点及诊治[J/OL]. 中华移植杂志(电子版), 2025, 19(01): 22-25.
[11] 金小艳, 邓芳, 方韶晗, 丁亚婷. 儿童肾移植受者心脏结构及功能分析[J/OL]. 中华移植杂志(电子版), 2025, 19(01): 26-30.
[12] 刘志新, 陈小林, 肖文军, 刘思琪. 日间手术在儿童鞘膜积液腹腔镜手术中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 36-40.
[13] 范利杰, 韦雅丽. 右旋氯胺酮与舒芬太尼对腹腔镜疝囊高位结扎术患儿血流动力学及自主恢复的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(02): 214-218.
[14] 鲍文海, 阮勤, 李菲菲. Th17/Treg 免疫失衡在儿童腹型过敏性紫癜诊断与病情评估中的应用[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 162-167.
[15] 韩彩云, 马娇, 李燕. 血清PAF和sTM水平与小儿轮状病毒肠炎及脱水程度的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 83-88.
阅读次数
全文


摘要