切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2025, Vol. 21 ›› Issue (01) : 29 -36. doi: 10.3877/cma.j.issn.1673-5250.2025.01.004

妇儿影像学研究专辑

学龄前孤独症谱系障碍患儿杏仁核体积及白质纤维连接研究
倪立桐1, 李世俊2,()   
  1. 1. 中国人民解放军总医院研究生院,北京 100853
    2. 中国人民解放军总医院第一医学中心放射诊断科,北京 100853
  • 收稿日期:2024-10-11 修回日期:2025-01-20 出版日期:2025-02-01
  • 通信作者: 李世俊
  • 基金资助:
    国家重点研发计划“国家质量基础设施体系”重点专项项目(2022YFC2409404)首都卫生发展科研专项项目(首发2024-2-5024)

Study on amygdala volume and amygdala white matter fiber connection in preschool children with autism spectrum disorder

Litong Ni1, Shijun Li2,()   

  1. 1. Graduate School,Chinese PLA General Hospital,Beijing 100853,China
    2. Department of Radiology,First Medical Center,Chinese PLA General Hospital,Beijing 100853,China
  • Received:2024-10-11 Revised:2025-01-20 Published:2025-02-01
  • Corresponding author: Shijun Li
引用本文:

倪立桐, 李世俊. 学龄前孤独症谱系障碍患儿杏仁核体积及白质纤维连接研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(01): 29-36.

Litong Ni, Shijun Li. Study on amygdala volume and amygdala white matter fiber connection in preschool children with autism spectrum disorder[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2025, 21(01): 29-36.

目的

探讨学龄前孤独症谱系障碍(ASD)患儿杏仁核体积及杏仁核白质纤维连接强度,并对其与ASD 相关量表评分进行相关性分析。

方法

选择2022年9月至2023年9月于中国人民解放军总医院第一医学中心小儿内科确诊的64例ASD 患儿为研究对象,纳入ASD 组(n=64);选择同期从北京市招募的23例典型发育(TD)儿童为对照,纳入对照组(n=23)。采用前瞻性研究方法,利用3.0 T MRI扫描仪采集2组受试儿颅脑弥散张量成像(DTI)数据,采用深度弥散脑区解剖分割(DDParcel)工具与FreeSurfer中的DK atlas脑模板,对2组受试儿杏仁核进行精准分割并计算体积,通过基于双张量无迹卡尔曼滤波(t UKF)的纤维示踪技术,追踪2组受试儿杏仁核白质纤维连接,评估杏仁核白质纤维连接强度。由2 名儿科主任医师采取《精神障碍诊断与统计手册(5 版)》(DSM-5)、《儿童孤独症评定量表(CARS)》与《孤独症行为量表(ABC)》,对2组受试儿实施双盲测评。对2组受试儿杏仁核体积、杏仁核白质纤维连接强度比较,采用独立样本t 检验。采用Pearson相关性分析方法,对ASD 组患儿杏仁核体积及杏仁核白质纤维连接强度与ABC、CARS评分进行相关性分析。本研究遵循的程序符合中国人民解放军总医院医学伦理委员会制定的标准,并获得该伦理委员会批准(批准文号:S2022-646-01),与所有受试儿监护人在入组前签署临床研究知情同意书。2组受试儿年龄比较,差异无统计学意义(P >0.05)。

结果

①ASD 组患儿DSM-5 评分为(4.0±1.5)分,CARS评分为(31.1±5.6)分,ABC 总评分为(45.7±18.0)分。ASD 患儿DSM-5评分、ABC各维度评分及总评分、CARS 评分,均显著高于对照组,并且差异均有统计学意义(P <0.001)。②ASD 组患儿右侧杏仁核体积大于左侧杏仁核体积,差异有统计学意义(t=-3.36,P=0.001)。2组受试儿左、右侧杏仁核体积组间分别比较,差异均无统计学意义(P>0.05)。③ASD 组患儿左侧杏仁核与左侧眶额叶及左侧颞极间的白质纤维连接强度,以及右侧杏仁核与右侧距状旁回间的白质纤维连接强度,均显著低于对照组受试儿,差异均有统计学意义(t=2.30、3.02、2.70,P=0.024、0.003、0.008)。④ASD 组患儿的左侧杏仁核与左侧眶额叶间的白质纤维连接强度与其ABC 的躯体运动能力维度评分呈负相关关系(r=-0.269,P=0.032)。

结论

ASD 患儿右侧杏仁核体积大于左侧,其杏仁核与颞极、眶额叶、距状旁回等脑区纤维连接强度存在异常,杏仁核与眶额叶间的白质纤维连接强度异常与ASD 患儿躯体运动障碍相关。

Objective

To investigate the amygdala volume and amygdala white matter fiber connection intensity in preschool children with autism spectrum disorder (ASD),and their correlation with ASD assessment scale scores.

Methods

A total of 64 children with ASD diagnosed in the Department of Pediatrics,First Medical Center,Chinese PLA General Hospital from September 2022 to September 2023 were enrolled into ASD group(n=64),And other 23 typically development(TD)children recruited from Beijing during the same period were prospectively enrolled into control group (n=23).Brain diffusion tensor imaging(DTI)image data of children in two groups were acquired using a 3.0 T MRI scanner by prospective research method.The deep diffusion parcellation(DDParcel)tool and the DK atlas brain template in FreeSurfer were employed for precise segmentation and volumetric measurement of the amygdala.White matter connections with the amygdala were tracked with two-tensor unscented Kalman filter (t UKF)tractography to evaluate the strength of amygdala white matter fiber connectivity.Two chief physician of pediatrics conducted double-blind assessments on two groups of subjects using the DiagnosticandStatisticalManualof MentalDisorders5thEdition (DSM-5),ChildhoodAutismRatingScale (CARS),and Autism BehaviorChecklist(ABC).The comparison of the amygdala volume and the intensity of amygdala white matter fiber connection between two groups was performed by independent-samples t test.Pearson correlation analysis was used to analyze the correlation between the amygdala volume and amygdala white matter fiber connection intensity with the ABC and CARS scores in ASD group.The procedures followed in this study were in accordance with the standards set by the Medical Ethics Committee of the Chinese PLA General Hospital and were approved by this committee (Approval No.S2022-646-01).Written informed consents were obtained from all guardians of the children before their inclusion in the study.There was no significant difference in the age of the subjects between the two groups (P>0.05).

Results

①The DSM-5 score of children in ASD group was (4.0±1.5)points,the CARS score was(31.1±5.6)points,and the total ABC score was (45.7±18.0)points.The DSM-5 score,the scores of each dimension and the total score of ABC,and the CARS score of children in ASD group were significantly higher than those in control group,and the differences were statistically significant (P<0.001).②The volume of right amygdala in ASD group was larger than that of the left amygdala,and the difference was statistically significant (t=-3.36,P=0.001).There was no statistically significant difference in the volume of the left and right amygdala between two groups (P>0.05).③The white matter fiber connection intensity between the left amygdala and the left orbitofrontal lobe and the left temporal pole,as well as the white matter fiber connection intensity between the right amygdala and the right paracalcarine gyrus in ASD group were significantly lower than those in control group (t=2.30,3.02,2.70;P=0.024,0.003,0.008).④In ASD group,the white matter fiber connection intensity between the left amygdala and the left orbitofrontal lobe was negatively correlated with the physical motor ability dimension score of the ABC(r=-0.269,P=0.032).

Conclusions

The volume of right amygdala in children with ASD is larger than that of the left amygdala.The fiber connection intensity between the amygdala and the temporal pole,orbitofrontal lobe,paracalcarine gyrus and other brain regions in children with ASD is abnormal.The abnormal white matter fiber connection intensity between the amygdala and orbitofrontal lobe is associated with somatic movement disorders in children with ASD.

表1 2组受试儿DSM-5、ABC与CARS评分比较(分,±s
表2 2组受试儿双侧杏仁核体积比较(mm3±s
表3 ASD 组患儿杏仁核体积与CRAS评分、ABC 总评分及其不同维度评分的相关性分析(n=64)
图1 ASD 组与对照组儿童双侧杏仁核白质纤维连接示意图(图1A、1B:左侧杏仁核与左侧眶额叶、左侧颞极间的白质纤维连接示意图;图1C、1D:右侧杏仁核与右侧右侧距状旁回间的白质纤维连接示意图) 注:对照组为典型发育儿童。ASD为孤独症谱系障碍。AMY.L为左侧杏仁核,SPG.L为左侧眶额叶,TPO.L为左侧颞极,AMY.R为右侧杏仁核,PCA.R 为右侧距状旁回。连线表示纤维连接。图1采用MATLAB软件绘制,仅绘制ASD组与对照组双侧杏仁核白质纤维连接强度差异有统计学意义(P<0.05)的纤维连接
表4 2组受试儿双侧杏仁核白质纤维连接强度NoS比较(±s
图2 ASD 组患儿左侧杏仁核与左侧眶额叶间的白质纤维连接强度NoS与ABC 的躯体运动能力维度评分相关性散点图 注:ASD为孤独症谱系障碍,NoS为流线数量,ABC 为《孤独症行为量表》
表5 差异性杏仁核白质纤维连接强度NoS与CARS、ABC评分的相关性分析(n=64)
[1]
Paulsen B,Velasco S,Kedaigle AJ,et al.Autism genes converge on asynchronous development of shared neuron classes[J].Nature,2022,602(7896):268-273.DOI:10.1038/s41586-021-04358-6.
[2]
Zeidan J,Fombonne E,Scorah J,et al.Global prevalence of autism:a systematic review update[J].Autism Res,2022,15(5):778-790.DOI:10.1002/aur.2696.
[3]
Fombonne E,MacFarlane H,Salem AC,Epidemiological surveys of ASD:advances and remaining challenges[J].J Autism Dev Disord,2021,51(12):4271-4290.DOI:10.1007/s10803-021-05005-9.
[4]
Baron-Cohen S,Ring HA,Bullmore ET,et al.The amygdala theory of autism[J].Neurosci Biobehav Rev,2000,24(3):355-364.DOI:10.1016/S0149-7634(00)00011-7.
[5]
Dougherty CC,Evans DW,Myers SM,et al.A comparison of structural brain imaging findings in autism spectrum disorder and attention-deficit hyperactivity disorder[J].Neuropsychol Rev,2016,26(1):25-43.DOI:10.1007/s11065-015-9300-2.
[6]
Zhu Z,Fang X,Chen H,et al.Alterations in volumes and MRI features of amygdala in Chinese autistic preschoolers associated with social and behavioral deficits[J].Brain Imaging B ehav,2018,12(6):1814-1821.DOI:10.1007/s11682-018-9853-9.
[7]
Zagorski N.Children with autism,fragile X show distinct early brain changes[J].Psychiatr News,2022,57(9):appi.pn.2022.09.6.11.DOI:10.1176/appi.pn.2022.09.6.11.
[8]
Libero LE,Burge WK,Deshpande HD,et al.White matter diffusion of major fiber tracts implicated in autism spectrum disorder[J].Brain Connect,2016,6(9):691-699.DOI:10.1089/brain.2016.0442.
[9]
Kryza-Lacombe M,Iturri N,Monk CS,et al.Face emotion processing in pediatric irritability:neural mechanisms in a sample enriched for irritability with autism spectrum disorder[J].J Am Acad Child Adolesc Psychiatry,2020,59(12):1380-1391.DOI:10.1016/j.jaac.2019.09.002.
[10]
Sato W,Uono S,Kochiyama T.Neurocognitive mechanisms underlying social atypicalities in autism:weak amygdala's emotional modulation hypothesis[J].Front Psychiatry,2020,11:864.DOI:10.3389/fpsyt.2020.00864.
[11]
Kovacevic M,Macuzic IZ,Milosavljevic J,et al.Amygdala volumes in autism spectrum disorders:Meta-analysis of magnetic resonance imaging s tudies[J].Rev J Autism Dev Disord,2023,10(1):169-183.DOI:10.1007/s40489-021-00281-8.
[12]
Azad A,Cabeen RP,Sepehrband F,et al.Microstructural properties within the amygdala and affiliated white matter tracts across adolescence[J].Neuroimage,2021,243:118489.DOI:10.1016/j.neuroimage.2021.118489.
[13]
Paszke A,Gross S,Massa F,et al.Py Torch:an imperative style,high-performance deep learning library[C]//Advances in Neural Information Processing Systems (NeurIPS 2019),2019:8026-8037.DOI:10.48550/ar Xiv.1912.01703.
[14]
Malcolm JG,Shenton ME,Rathi Y.Filtered multitensor tractography[J].IEEE Trans Med Imaging,2010,29(9):1664-1675.DOI:10.1109/tmi.2010.2048121.
[15]
Rathi Y,Kubicki M,Bouix S,et al.Statistical analysis of fiber bundles using multi-tensor tractography:application to first-episode schizophrenia[J].Magn Reson Imaging,2011,29(4):507-515.DOI:10.1016/j.mri.2010.10.005.
[16]
He J,Zhang F,Xie G,et al.Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI[J].Hum Brain Mapp,2021,42(12):3887-3904.DOI:10.1002/hbm.25472.
[17]
First MB.DSM-5-TR®handbook of differential diagnosis[M].Washington,DC:American Psychiatric Association,2013.
[18]
Wadden NP,Bryson SE,Rodger RS.A closer look at the autism behavior checklist:discriminant validity and factor structure[J].J Autism Dev Disord,1991,21(4):529-541.DOI:10.1007/BF02206875.
[19]
Schopler E,Reichler RJ,DeVellis RF,et al.Toward objective classification of childhood autism:Childhood Autism Rating Scale (CARS)[J].J Autism Dev Disord,1980,10(1):91-103.DOI:10.1007/BF02408436.
[20]
Zhang F,Cho KIK,Seitz-Holland J,et al.DDParcel:deep learning anatomical brain parcellation from diffusion MRI[J].IEEE Trans Med Imaging,2024,43(3):1191-1202.DOI:10.1109/TMI.2023.3331691.
[21]
Desikan RS,Ségonne F,Fischl B,et al.An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[J].Neuroimage,2006,31(3):968-980.DOI:10.1016/j.neuroimage.2006.01.021.
[22]
Zhang F,Savadjiev P,Cai W,et al.Whole brain white matter connectivity analysis using machine learning:an application to autism[J].NeuroImage,2018,172:826-837.DOI:10.1016/j.neuroimage.2017.10.029.
[23]
Mosconi MW,Cody-Hazlett H,Poe MD,et al.Longitudinal study of amygdala volume and joint attention in 2-to 4-yearold children with autism[J].Arch Gen Psychiatry,2009,66(5):509-516.DOI:10.1001/archgenpsychiatry.2009.19.
[24]
Nordahl CW,Scholz R,Yang X,et al.Increased rate of amygdala growth in children aged 2 to 4 years with autism spectrum disorders:a longitudinal study[J].Arch Gen Psychiatry,2012,69(1):53-61.DOI:10.1001/archgen psychiatry.2011.145.
[25]
Munson J,Dawson G,Abbott R,et al.Amygdalar volume and behavioral development in autism [J].Arch Gen Psychiatry,2006,63 (6):686-693.DOI:10.1001/archpsyc.63.6.686.
[26]
Joo SW,Kim H,Jo YT,et al.Shared and distinct white matter abnormalities in schizophrenia and bipolar disorder[J].Prog Neuro Psychopharmacol Biol Psychiatry,2021,108:110175.DOI:10.1016/j.pnpbp.2020.110175.
[27]
Gong L,Xu R,Yang D,et al.Orbitofrontal cortex functional connectivity-based classification for chronic insomnia disorder patients with depression symptoms[J].Front Psychiatry,2022,13:907978.DOI:10.3389/fpsyt.2022.907978.
[28]
Cheng W,Rolls ET,Qiu J,et al.Functional connectivity of the human amygdala in health and in depression[J].Soc Cogn Affect Neurosci,2018,13(6):557-568.DOI:10.1093/scan/nsy032.
[29]
Jezzini A,Bromberg-Martin ES,Trambaiolli LR,et al.A prefrontal network integrates preferences for advance information about uncertain rewards and punishments[J].Neuron,2021,109(14):2339-2352.e5.DOI:10.1016/j.neuron.2021.05.013.
[30]
Defenderfer J,Kerr-German A,Hedrick M,et al.Investigating the role of temporal lobe activation in speech perception accuracy with normal hearing adults:an eventrelated f NIRS study[J].Neuropsychologia,2017,106:31-41.DOI:10.1016/j.neuropsychologia.2017.09.004.
[31]
Bai C,Wang Y,Zhang Y,et al.Abnormal gray matter volume and functional connectivity patterns in social cognition-related brain regions of young children with autism spectrum disorder[J].Autism Res,2023,16(6):1124-1137.DOI:10.1002/aur.2936.
[32]
Chen YC,Chen C,Martínez RM,et al.An amygdalacentered hyper-connectivity signature of threatening face processing predicts anxiety in youths with autism spectrum conditions[J].Autism Res,2021,14(11):2287-2299.DOI:10.1002/aur.2595.
[33]
Kahl M,Wagner G,de la Cruz F,et al.Resilience and cortical thickness:a MRI study[J].Eur Arch Psychiatry Clin Neurosci,2020,270(5):533-539.DOI:10.1007/s00406-018-0963-6.
[34]
Little JA.Vision in children with autism spectrum disorder:a critical review[J].Clin Exp Optom,2018,101(4):504-513.DOI:10.1111/cxo.12651.
[35]
Liu J,Girault JB,Nishino T,et al.Atypical functional connectivity between the amygdala and visual,salience regions in infants with genetic liability for autism[J].Cereb Cortex,2024,34(13):30-39.DOI:10.1093/cercor/bhae092.
[1] 汪芳, 汪汇, 成三梅, 张海涛, 陈华兵. 孤独症儿童无移位肱骨髁上骨折的功能锻炼策略[J/OL]. 中华关节外科杂志(电子版), 2019, 13(05): 521-525.
[2] 王淑惠, 薛梅. 新生儿高胆红素血症所致脑损伤患儿的早期监测研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2021, 17(06): 634-642.
[3] 杨林瑞, 陈仁吉. 言语治疗结合经颅磁刺激用于腭裂言语障碍康复的可行性分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 195-199.
[4] 孙奥, 李文臣, 陈勃, 王海峰. 颅脑创伤后脑死亡判定辅助技术的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2018, 04(06): 371-373.
[5] 赵继宗. 携手攀登神经影像学第三高峰[J/OL]. 中华神经创伤外科电子杂志, 2017, 03(03): 129-131.
[6] 何伟斌, 李宸辉, 王高华, 易伟. 脑深部电刺激治疗强迫症的手术靶点研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 49-53.
[7] 李改智, 曹晓华, 张克让, 徐勇. 孤独症谱系障碍功能评估工具的临床应用分析[J/OL]. 中华诊断学电子杂志, 2021, 09(03): 152-154.
[8] 刘澳, 周菁, 孙永兵, 和俊雅, 林新贝, 乔琦, 李中林, 张建成, 武肖玲, 邹智, 胡扬喜, 肖新广, 吕雪, 李昊, 李永丽. 减重代谢手术后神经影像改变与认知功能评估的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 203-208.
阅读次数
全文


摘要