切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (02) : 192 -197. doi: 10.3877/cma.j.issn.1673-5250.2022.02.010

论著

DGAT1基因突变所致先天性腹泻与肠病临床分析并文献复习
王石, 王劲, 李婷婷, 王丹, 曾凌空()   
  1. 华中科技大学同济医学院附属武汉儿童医院(武汉市妇幼保健院)新生儿内科 430000
  • 收稿日期:2021-09-16 修回日期:2022-03-18 出版日期:2022-04-01
  • 通信作者: 曾凌空

Congenital diarrhea and enteropathies caused by DGAT1 gene mutation: a case report and literature review

Shi Wang, Jin Wang, Tingting Li, Dan Wang, Lingkong Zeng()   

  1. Department of Neonatology, Wuhan Children′s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430000, Hubei Province, China
  • Received:2021-09-16 Revised:2022-03-18 Published:2022-04-01
  • Corresponding author: Lingkong Zeng
  • Supported by:
    Medical Research Project of Hubei Federation of Pediatrics(HBPAMR-2021-06)
引用本文:

王石, 王劲, 李婷婷, 王丹, 曾凌空. DGAT1基因突变所致先天性腹泻与肠病临床分析并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 192-197.

Shi Wang, Jin Wang, Tingting Li, Dan Wang, Lingkong Zeng. Congenital diarrhea and enteropathies caused by DGAT1 gene mutation: a case report and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(02): 192-197.

目的

探讨二酰甘油O-酰基转移酶(DGAT)1基因突变所致先天性腹泻与肠病(CODEs)患儿的临床及基因突变特点。

方法

选择2020年12月,于华中科技大学同济医学院附属武汉儿童医院诊治的1例DGAT1基因突变所致CODEs患儿(以下以示区别称其为本例患儿)为研究对象。采用回顾性分析方法,分析本例患儿的临床病例资料,检索国内外数据库中关于DGAT1基因突变CODEs患儿相关研究的中、英文文献,总结该病患儿的临床及基因突变特点。本研究通过本院伦理委员会审查(审批文号:2021R045-E01)。监护人对本例患儿的诊治知情同意。

结果

①本例患儿为女性,生后50 d时,因呕吐、腹泻就诊,入院查体发现其伴营养不良,实验室检查主要为低蛋白血症及高甘油三酯血症,基因检测结果为DGAT1基因exon 1:c.133delG(p.Asp45Thrfs*22)移码突变,为纯合突变,其父母均为DGAT1基因该位点突变携带者。本例患儿经低脂奶粉喂养及对症支持等治疗26 d后,临床治愈出院。其出院诊断为,CODEs(DGAT1基因纯合突变)。②文献检索获得关于DGAT1基因突变CODEs患儿相关研究文献为10篇,纳入CODEs患儿为29例,加上本例患儿共计纳入30例的分析结果如下。这30例患儿均于婴儿期起病(19例在新生儿期起病),首发主要表现为腹泻(26/30,86.7%),呕吐(19/30,63.3%)及营养不良(20/30,66.7%);同时合并低蛋白血症(15/30,50.0%)和高甘油三酯血症(9/30,30.0%);DGAT1基因突变位点主要包括g.13827T>C、c.629_631delCCT、c.314C>T及c.1202G>A等,主要突变类型为剪接突变、移码突变、错义突变等。对其治疗均以对症支持治疗为主,同时辅以低脂或无脂饮食喂养,大部分患儿临床症状改善。

结论

本组CODEs患儿均由于DGAT1基因突变所致,多于新生儿期起病,主要临床表现为持续、严重、慢性腹泻与呕吐及营养不良,辅以低脂或无脂饮食可改善其临床症状。

Objective

To investigate characteristics of clinical and gene mutations of children with congenital diarrhea and enteropathies (CODEs) caused by diacylglycerol O-acyltransferase (DGAT)1 gene mutation.

Methods

A girl with CODEs caused by DGAT1 gene mutation treated in Wuhan Children′s Hospital, Tongji Medical College of Huazhong University of Science and Technology in December 2020 was selected as research subject. The clinical case data of the girl was retrospectively analyzed. Then Chinese and English literature related to CODEs caused by DGAT1 gene mutation in domestic and foreign databases were searched for literature review, and clinical and gene mutation characteristics of CODEs children were summarized. This study was reviewed by the Ethics Committee of our hospital (Approval No. 2021R045-E01). The guardians were informed and agreed to the diagnosis and treatment of this case.

Results

① This case was a 50-day-old girl who was admitted to hospital due to vomiting and diarrhea, her physical examination showed accompanied with malnutrition. The main laboratory findings were hypoproteinemia and hypertriglyceridemia. Genetic test results showed frameshift mutation and homozygous mutation of DGAT1 gene exon 1: c. 133delG (p.Asp45Thrfs*22). Her parents were mutation carriers of this site of DGAT1 gene. After 26 days of feeding with low-fat milk powder and symptomatic support treatment, she was clinically cured and discharged. Her discharge diagnosis was CODEs (homozygous mutation of DGAT1 gene). ② The literature review obtained 10 pieces of relevant research literature on children with CODEs caused by DGAT1 gene mutation, and 29 children with CODEs were included. The analysis results of the total of 30 CODEs children included the girl in this study were as follows. Onset of CODEs among 30 children were in infancy (19 cases were in neonatal period), and primary manifestations were diarrhea (26/30, 86.7%), vomiting (19/30, 63.3%) and malnutrition (20/30, 66.7%). Meanwhile, accompanied with hypoproteinemia (15/30, 50.0%) and hypertriglyceridemia (9/30, 30.0%). The main mutation sites of DGAT1 gene included g. 13827T>C, c. 629_631delCCT, c. 314C>T and c. 1202G>A, and the main mutation types included splicing mutation, frameshift mutation, missense mutation, etc.. Their treatment mainly focused on symptomatic and supportive treatment, and feeding with a low-fat or fat-free diet, then the clinical manifestations of most children improved.

Conclusions

A comprehensive analysis showed all of 30 CODEs children of this study caused by DGAT1 gene mutation, most of them onset in neonatal period, and their main clinical manifestations are persistent, severe and chronic diarrhea, and vomiting and malnutrition. Feeding low-fat or fat-free diet can improve their clinical manifestations.

图1 本例CODEs患儿(女性,生后50 d)及其父母DGAT1基因Sanger测序图[患儿存在DGAT1基因exon 1:c.133delG(p.Asp45Thrfs*22)纯合突变(箭头所示),其父母均为该基因位点杂合突变(箭头所示)]注:CODEs为先天性腹泻与肠病,DGAT1为二酰甘油O-酰基转移酶1
表1 30例DGAT1基因突变所致CODEs患儿基因突变分析结果
病例(No.) 文献(第1作者,文献发表年) DGAT1基因突变位点 氨基酸改变 突变类型
1 成琦等[4],2020 c.676+1G>T及c.367_368delCT 均无 剪切区变异及剪接突变
2 Ye等[5],2019 c.895-1G>A 剪接突变
3 Ye等[5],2019 c.1249-6T>G 剪接突变
4 Stephen等[6],2016 c.884T>G p.Leu295Pro 错义突变
5-8a Stephen等[6],2016 g.13827T>C p.Ala226_Arg250del 剪接突变
9 Ratchford等[7],2018 c.1013_1015delTCT及c.1260C>G p.Phe338del及p.Ser420Arg 整码突变及错义突变
10 Haas等[8],2012 g.13827T>C 剪接突变
11 Haas等[8],2012 g.13827T>C 剪接突变
12 Xu等[9],2020 c.895-1G>A及c.751+1G>C 均无 均为剪接突变
13、14b Gluchowski等[10],2017 c.314C>T p.L105P 错义突变
15、16a van Rijn等[11],2018 c.1202G>A p.W401 无义突变
17 van Rijn等[11],2018 c.573_574delAG ins(CCCATCCCACCCTGCCCATCTc) 插入伴缺失突变
18 van Rijn等[11],2018 c.937-1G>A 无义突变
19、20a van Rijn等[11],2018 c.953insG p.I319Hfs*31 移码突变
21、22a van Rijn等[11],2018 c.629_631delCCT p.S210_Y211delinsY 整码突变
23、24b van Rijn等[11],2018 c.629_631delCCT p.S210_Y211delinsY 整码突变
25 Schlegel等[12],2018 c.145541756A-G 剪切区变异
26 Gupta等[13],2020 c.629_631delCCT p.Ser210del 整码突变
27 Gupta等[13],2020 c.676+1G>A 剪接突变
28 Gupta等[13],2020 c.1311+1G>A及c.1462delG 无及p.Ala488Profs*226 无义突变及移码突变
29 Gupta等[13],2020 c.1310A>G及c.981+1G>T p.Gln437Arg及无 剪接突变及无义突变
本例 王石等,2022 c.133delG p.Asp45Thrfs*22 移码突变
[1]
黄瑛,叶孜清. 儿童先天性腹泻与肠病[J]. 中国实用儿科杂志2019, 34(11): 892-895. DOI: 10.19538/j.ek2019110604.
[2]
Ye Z, Huang Y, Zheng C, et al. Clinical and genetic spectrum of children with congenital diarrhea and enteropathy in China[J]. Genet Med, 2019, 21(10): 2224-2230. DOI: 10.1038/s41436-019-0488-z.
[3]
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. DOI: 10.1038/gim.2015.30.
[4]
成琦,方优红,罗优优,等. 二酰基甘油酰基转移酶1基因缺陷致先天性腹泻病一例[J]. 中华儿科杂志2020, 58(12): 1018-1020. DOI: 10.3760/cma.j.cn112140-20200425-00434.
[5]
Ye ZQ, Huang Y, Wang YH, et al. Phenotype and genotype of a cohort of Chinese children with early-onset protein-losing enteropathy[J]. J Pediatr, 2019, 208: 38. e3-42. e3. DOI: 10.1016/j.jpeds.2018.12.003.
[6]
Stephen J, Vilboux T, Haberman Y, et al. Congenital protein losing enteropathy: an inborn error of lipid metabolism due to DGAT1 mutations[J]. Eur J Hum Genet, 2016, 24(9): 1268-1273. DOI: 10.1038/ejhg.2016.5.
[7]
Ratchford TL, Kirby AJ, Pinz H, et al. Congenital diarrhea from DGAT1 mutation leading to electrolyte derangements, protein-losing enteropathy, and rickets[J]. J Pediatr Gastroenterol Nutr, 2018, 66(3): e82-e83. DOI: 10.1097/MPG.0000000000001750.
[8]
Haas JT, Winter HS, Lim E, et al. DGAT1 mutation is linked to a congenital diarrheal disorder[J]. J Clin Invest, 2012, 122(12): 4680-4684. DOI: 10.1172/JCI64873.
[9]
Xu LJ, Gu WZ, Luo YY, et al. DGAT1 mutations leading to delayed chronic diarrhoea: a case report[J]. BMC Med Genet, 2020, 21(1): 239. DOI: 10.1186/s12881-020-01164-1.
[10]
Gluchowski NL, Chitraju C, Picoraro JA, et al. Identification and characterization of a novel DGAT1 missense mutation associated with congenital diarrhea[J]. J Lipid Res, 2017, 58(6): 1230-1237. DOI: 10.1194/jlr.P075119.
[11]
van Rijn JM, Ardy RC, Kuloǧlu Z, et al. Intestinal failure and aberrant lipid metabolism in patients with DGAT1 deficiency[J]. Gastroenterology, 2018, 155(1): 130. e15-143. e15. DOI: 10.1053/j.gastro.2018.03.040.
[12]
Schlegel C, Lapierre LA, Weis VG, et al. Reversible deficits in apical transporter trafficking associated with deficiency in diacylglycerol acyltransferase[J]. Traffic, 2018, 19(11): 879-892. DOI: 10.1111/tra.12608.
[13]
Gupta A, Dsouza NR, Zarate YA, et al. Genetic variants in DGAT1 cause diverse clinical presentations of malnutrition through a specific molecular mechanism[J]. Eur J Med Genet, 2020, 63(4): 103817. DOI: 10.1016/j.ejmg.2019.103817.
[14]
Thiagarajah JR, Kamin DS, Acra S, et al. Advances in evaluation of chronic diarrhea in infants[J]. Gastroenterology, 2018, 154(8): 2045-2059. e6. DOI: 10.1053/j.gastro.2018.03.067.
[15]
Shankar S, Rosenbaum J. Chronic diarrhoea in children: a practical algorithm-based approach[J]. J Paediatr Child Health, 2020, 56(7): 1029-1038. DOI: 10.1111/jpc.14986.
[16]
Yen CL, Stone SJ, Koliwad S, et al. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis[J]. J Lipid Res, 2008, 49(11): 2283-2301. DOI: 10.1194/jlr.R800018-JLR200.
[17]
Takemoto K, Fukasaka Y, Yoshimoto R, et al. Diacylglycerol acyltransferase 1/2 inhibition induces dysregulation of fatty acid metabolism and leads to intestinal barrier failure and diarrhea in mice[J]. Physiol Rep, 2020, 8(15): e14542. DOI: 10.14814/phy2.14542.
[18]
Cases S, Smith SJ, Zheng YW, et al. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis[J]. Proc Natl Acad Sci U S A, 1998, 95(22): 13018-13023. DOI: 10.1073/pnas.95.22.13018.
[19]
Denison H, Nilsson C, Löfgren L, et al. Diacylglycerol acyltransferase 1 inhibition with AZD7687 alters lipid handling and hormone secretion in the gut with intolerable side effects: a randomized clinical trial[J]. Diabetes Obes Metab, 2014, 16(4): 334-343. DOI: 10.1111/dom.12221.
[1] 谢燕华, 陈伟玲, 唐子鉴, 陶宏伟, 何学智, 黄兵旋, 许娜, 夏焙. 新生儿及小婴儿化脓性髋关节炎的超声诊断:病例系列研究[J]. 中华医学超声杂志(电子版), 2022, 19(12): 1377-1382.
[2] 包艳娟, 杨小红, 杨星海, 潘圣宝, 杨帆, 赵胜. 腹膜后内寄生胎产前和新生儿期的临床与超声影像学特征[J]. 中华医学超声杂志(电子版), 2022, 19(12): 1349-1354.
[3] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[4] 杨莹, 刘艳, 王央丹. 新生儿结节性硬化症相关性癫痫1例并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 464-472.
[5] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[6] 赵金琦, 杨楠, 宫丽霏, 唐玥, 李璐璐, 杨海河, 孔元原. 2011—2020年北京市小于胎龄儿出生状况分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 278-286.
[7] 陈玉莲, 刘瀚旻. 人体生命早期呼吸系统菌群与肺部微生物组发育特征及早期菌群稳态研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 31-37.
[8] 张雯, 徐宏燕, 张彦春, 刘凯波. 2017—2021年北京市先天性心脏病流行病学资料分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 61-68.
[9] 郝萧, 刘兴莉, 夏小叶, 刁雪芹, 姚美雪. 母亲免疫球蛋白G不规则抗体效价及其效价积分对母婴Rh血型不合新生儿溶血病患儿换血治疗的预测分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 677-684.
[10] 李佳丽, 吴杨, 张莉, 夏斌, 何洋, 陈忠, 唐军, 母得志. 新生儿消化道穿孔患儿的临床特点及治疗结局[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 703-711.
[11] 李东明, 何升. 先天性巨细胞病毒感染早期筛查研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 627-633.
[12] 张非红, 夏斌. 肠道菌群失调与新生儿坏死性小肠结肠炎发病机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 523-527.
[13] 鄢锦丽, 陈大鹏. 益生菌在新生儿呼吸系统疾病临床治疗中的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 517-522.
[14] 悦光, 卢江溢, 周小凤, 王倩颖, 巨容. 胎盘输血技术发展现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(04): 393-399.
[15] 强光峰, 孟兰兰, 赵静, 牛峰海, 任雪云. 肺部超声评分对呼吸困难新生儿使用有创机械通气的预测价值[J]. 中华诊断学电子杂志, 2023, 11(02): 104-108.
阅读次数
全文


摘要