切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (03) : 262 -267. doi: 10.3877/cma.j.issn.1673-5250.2021.03.004

述评

胎儿拷贝数变异的产前诊断与遗传咨询
蔡艾杞1,2,1,2, 章锦曼2,3,2,3, 唐新华2,3,2,3, 朱宝生1,2,3,,1,2,3()   
  • 收稿日期:2021-05-11 修回日期:2021-05-21 出版日期:2021-06-01
  • 通信作者: 朱宝生

Prenatal diagnosis and genetic counseling of fetal copy number variation

Aiqi Cai1,2,1,2, Jinman Zhang2,3,2,3, Xinhua Tang2,3,2,3, Baosheng Zhu1,2,3,1,2,3,()   

  • Received:2021-05-11 Revised:2021-05-21 Published:2021-06-01
  • Corresponding author: Baosheng Zhu
  • Supported by:
    Key Science and Technology Project of Yunnan Province: Clinical Medical Research Center for Birth Defects and Rare Diseases in Yunnan Province(2019ZF015); Key Science and Technology Project of Yunnan Province: A Study on Key Technologies of Maternal and Infant Health Screening and Intervention in Advanced Age and Reproductive Families(2018ZF009)
引用本文:

蔡艾杞, 章锦曼, 唐新华, 朱宝生. 胎儿拷贝数变异的产前诊断与遗传咨询[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(03): 262-267.

Aiqi Cai, Jinman Zhang, Xinhua Tang, Baosheng Zhu. Prenatal diagnosis and genetic counseling of fetal copy number variation[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(03): 262-267.

胎儿拷贝数变异(CNV)是指长度>1 kb的DNA片段的拷贝数增加或者减少,也包括亚显微水平的染色体片段缺失和重复。CNV所导致的胎儿疾病,被统称为微缺失/微重复综合征(MMS)。通过染色体微阵列分析(CMA)或者CNV测序等技术,可以准确、快速检测出CNV、染色体数目异常,以及嵌合比例≥30%嵌合体,可使MMS检出率相较于染色体核型分析提高1.0%~1.7%。由于在胎儿期多数疾病尚无明显和特征性的影像学异常表现,对胎儿致病性CNV(pCNV)进行判断及其遗传咨询,成为目前产前诊断领域的难点。对于胎儿pCNV判断原则包括:①不能仅凭借CNV片段长度判断pCNV,还需要结合其所处位置、所包含基因突变数量、所包含基因是否具有剂量效应进行评估,一般应进一步检测亲代染色体核型、亲代CNV和结合亲代临床表型等综合评估;②片段长度<1 Mb且亲代中携带相同CNV的胎儿CNV致病作用有限,而对于≥1 Mb的新发突变CNV,则意味着其致病风险更高;③同等大小CNV比较时,缺失型CNV的临床影响比重复型更大。可借助ClinGen网站CNV评分系统,快速判断胎儿pCNV,若CNV评分≥0.99,则判定为pCNV;评分为0.9~0.98,则为疑似pCNV(LpCNV);评分为-0.89~0.89,则为临床意义未明(VUS) CNV;评分为-0.98~-0.9,则为疑似良性(LB) CNV;评分≤-0.99,则为良性CNV。正常人群中广泛存在着良性CNV,部分pCNV的临床表现可能并不严重,仅当确诊胎儿具有可导致死亡或严重出生缺陷的pCNV时,临床应建议孕妇及时终止妊娠,防止重大出生缺陷患儿出生。

Fetal copy number variation (CNV) refers to increase or decrease in copy number of DNA fragments with more than 1 kb in length, and it also includes the deletion and duplication of chromosome fragments at submicroscopic level. Diseases caused by fetal CNV are collectively referred as microdeletion and microduplication syndromes (MMS). Through technologies such as chromosome microarray analysis (CMA) and CNV sequencing, CNV and numerical chromosome abnormalities can be detected accurately and quickly, as well as chimera and mosaic individuals with mosaic ratio ≥30%. CMA or/and CNV sequencing can increase the detection rate of MMS by 1.0%-1.7% compared with karyotype analysis. Since there are no obvious and characteristic imaging abnormalities in most diseases during fetal period, judgment of fetal pathogenicity CNV (pCNV) and genetic counseling have become main challenges in current prenatal diagnosis service. Therefore, relevant principles for pCNV sequencing are as follows. ①Judgement of pCNV fragment is not only based on its fragment size, but also needs to be evaluated based on fragment′s location, the number of gene mutations, and whether gene has a dose effect. It is often necessary to further test parental chromosome karyotype, parental CNV and combined with clinical phenotype of parents, thus conducting a comprehensive evaluation of pCNV. ②A fetal CNV with fragment <1 Mb in length and inherited from one parental generation has limited pathogenicity, while a CNV with fragment ≥ 1 Mb length and being a new mutation means that it bears higher pathogenic risk. ③When CNV of the same size are compared with each other, clinical impact of chromosome deletion is greater than that of duplicates. CNV scoring system on the ClinGen website can be used to quickly determine fetal pCNV: CNV with a score ≥0.99 are judged as pCNV, those with a score between 0.9 to 0.98 are likely pCNV (LpCNV), CNV scored between -0.89 to 0.89 are regarded as variants of uncertain significance (VUS) CNV, and those with a score between -0.98 to -0.9 are determined as likely benign (LB) CNV, and the rest with a score ≤ -0.99 are benign CNV. Benign CNV is widespread in normal population. Clinical manifestations of some pCNV may not be serious. Only when it is confirmed that fetal pCNV can cause death or serious birth defects, clinicians should advice pregnant women terminate pregnancy in time to prevent major birth defects.

[1]
Martin K, Iyengar S, Kalyan A, et al. Clinical experience with a single-nucleotide polymorphism-based non-invasive prenatal test for five clinically significant microdeletions[J]. Clin Genet, 2018, 93(2): 293-300. DOI: 10.1111/cge.13098.
[2]
Evans MI, Wapner RJ, Berkowitz RL. Noninvasive prenatal screening or advanced diagnostic testing: caveat emptor[J]. Am J Obstet Gynecol, 2016, 215(3): 298-305. DOI: 10.1016/j.ajog.2016.04.029.
[3]
Weckselblatt B, Rudd MK. Human structural variation: mechanisms of chromosome rearrangements[J]. Trend Genet, 2015, 31(10): 587-599. DOI: 10.1016/j.tig.2015.05.010.
[4]
Campbell IM, Gambin T, Dittwald P, et al. Human endogenous retroviral elements promote genome instability via non-allelic homologous recombination[J]. BMC Biol, 2014, 12: 74. DOI; 10.1186/s12915-014-0074-4.
[5]
染色体微阵列分析技术在产前诊断中的应用协作组. 染色体微阵列分析技术在产前诊断中的应用专家共识[J]. 中华妇产科杂志2014, 49(8): 570-572. DOI: 10.3760/cma.j.issn.0529-567x.2014.08.002.
[6]
Wapner RJ, Martin CL, Levy B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis[J]. N Engl J Med, 2012, 367(23): 2175-2184. DOI: 10.1056/NEJMoa1203382.
[7]
Dong Z, Zhang J, Ping H, et al. Low-pass whole-genome sequencing in clinical cytogenetics: a validated approach[J]. Genet Med, 2016, 18(9): 940-948. DOI: 10.1038/gim.2015.199.
[8]
中华医学会医学遗传学分会临床遗传学组,中国医师协会医学遗传医师分会遗传病产前诊断专业委员会,中华预防医学会出生缺陷预防与控制专业委员会遗传病防控学组. 低深度全基因组测序技术在产前诊断中的应用专家共识[J]. 中华医学遗传学杂志2019, 36(4): 293-296. DOI: 10.3760/cma.j.issn.1003-9406.2019.04.001.
[9]
Wang J, Chen L, Cong Z, et al. Prospective chromosome analysis of 3 429 amniocentesis samples in China using copy number variation sequencing[J]. Am J Obstet Gynecol, 2018, 219(3): 287.el-287.e18. DOI: 10.1016/j.ajog.2018.05.030.
[10]
Wang H, Dong Z, Rui Z, et al. Low-pass genome sequencing versus chromosomal microarray analysis: implementation in prenatal diagnosis[J]. Genet Med, 2020, 22(3): 500-510. DOI: 10.1038/s41436-019-0634-7.
[11]
章锦曼,朱宝生. 高通量测序技术在产前诊断中的应用[J]. 中国实用妇科与产科杂志2020, 36(9): 17-19. DOI: 10.19538/j.fk2020090104.
[12]
Nevado J, Mergener R, Palomares-Bralo M, et al. New microdeletion and microduplication syndromes: a comprehensive review[J]. Genet Mol Biol, 2014, 37(1 Suppl): 210-219. DOI: 10.1590/s1415-47572014000200007.
[13]
Farnaes L, Hildreth A, Sweeney N M, et al. Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization[J]. NPJ Genom Med, 2018, 3: 10. DOI: 10.1038/s41525-018-0049-4.
[14]
Zhang J, Tang X, Hu J, et al. Investigation on combined copy number variation sequencing and cytogenetic karyotyping for prenatal diagnosis[J]. BMC Pregnancy Childbirth, 2021, 21(1): 496. DOI: 10.1186/s12884-021-03918-y.
[15]
Marcou CA, Pitel B, Hagen CE, et al. Limited diagnostic impact of duplications<1 Mb of uncertain clinical significance: a 10-year retrospective analysis of reporting practices at the Mayo Clinic[J]. Genet Med, 2020, 22(12): 2120-2124. DOI: 10.1038/s41436-020-0932-0.
[16]
Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen)[J]. Genet Med, 2020, 22(2): 245-257. DOI: 10.1038/s41436-019-0686-8.
[17]
Shi P, Li R, Wang C, et al. Influence of validating the parental origin on the clinical interpretation of fetal copy number variations in 141 core family cases[J]. Mol Genet Genomic Med, 2019, 7(10): e00944. DOI: 10.1002/mgg3.944.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 戢秀勤, 杨小红, 赵胜, 路小军, 张晓燕, 张涛, 黄晓宇. 早孕期双胎反向动脉灌注序列征的产前超声诊断[J]. 中华医学超声杂志(电子版), 2022, 19(12): 1355-1360.
[3] 任芸芸. 无创产前诊断时代早孕期超声检查的价值[J]. 中华医学超声杂志(电子版), 2022, 19(09): 873-876.
[4] 曾晴, 文华轩, 袁鹰, 丁妍, 罗丹丹, 廖伊梅, 梁美玲, 秦越, 彭桂艳, 林毅, 邹于, 李胜利. 二维横切面新方法对胎儿胼胝体结构异常的诊断价值[J]. 中华医学超声杂志(电子版), 2022, 19(09): 899-907.
[5] 满婷婷, 郝晓艳, 刘晓伟, 孙海瑞, 何怡华. 法洛四联症常见心内合并畸形及遗传学异常分析[J]. 中华医学超声杂志(电子版), 2022, 19(08): 779-784.
[6] 薛超, 张烨, 赵映, 韩建成, 谷孝艳, 孙琳, 刘晓伟, 宋伟, 何怡华. 胎儿先天性肺动脉瓣缺如综合征的超声特征及预后分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 410-418.
[7] 张雯, 张彦春, 刘凯波, 徐宏燕. 北京市胎儿先天性脑积水的产前MRI诊断及围产期转归[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 345-349.
[8] 曾照敏, 余海燕. 超雌综合征的临床认知[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 145-150.
[9] 胡青, 余海燕. 胎儿宫内治疗及风险评估[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 23-30.
[10] 张禾璇, 宋咏刚, 杨雪. 孕妇无创产前检测结果的大样本分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 685-691.
[11] 陈金卫, 戴常平, 申屠伟慧, 张伟娟, 张蕊, 王红英. 胎儿超声筛查不同胎龄胎儿先天性唇腭裂的检查时间及检出率比较[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(04): 442-448.
[12] 庄建龙, 傅婉玉, 陈文莉, 江矞颖, 曾书红, 王元白, 吴小霞. 罕见染色体13q22.1-13q31.3缺失综合征男婴的诊治及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(03): 337-342.
[13] 贺江梅, 刘红梅, 郑梅玲, 张志莉. 无创产前检测筛查胎儿染色体拷贝数变异临床价值[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(03): 300-306.
[14] 雒海瑕, 王伟, 郝敏. 基因拷贝数变异在宫颈癌的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 139-144.
[15] 谭剑平, 胡搏文, 汤景, 刘颖娜, 杜涛, 祝丽琼, 刘颖琳, 曹春伟, 陈慧. 复发性流产产前诊断指征与妊娠结局60例临床分析[J]. 中华产科急救电子杂志, 2022, 11(04): 234-240.
阅读次数
全文


摘要