[1] |
Martin K, Iyengar S, Kalyan A, et al. Clinical experience with a single-nucleotide polymorphism-based non-invasive prenatal test for five clinically significant microdeletions[J]. Clin Genet, 2018, 93(2): 293-300. DOI: 10.1111/cge.13098.
|
[2] |
Evans MI, Wapner RJ, Berkowitz RL. Noninvasive prenatal screening or advanced diagnostic testing: caveat emptor[J]. Am J Obstet Gynecol, 2016, 215(3): 298-305. DOI: 10.1016/j.ajog.2016.04.029.
|
[3] |
Weckselblatt B, Rudd MK. Human structural variation: mechanisms of chromosome rearrangements[J]. Trend Genet, 2015, 31(10): 587-599. DOI: 10.1016/j.tig.2015.05.010.
|
[4] |
Campbell IM, Gambin T, Dittwald P, et al. Human endogenous retroviral elements promote genome instability via non-allelic homologous recombination[J]. BMC Biol, 2014, 12: 74. DOI; 10.1186/s12915-014-0074-4.
|
[5] |
|
[6] |
Wapner RJ, Martin CL, Levy B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis[J]. N Engl J Med, 2012, 367(23): 2175-2184. DOI: 10.1056/NEJMoa1203382.
|
[7] |
Dong Z, Zhang J, Ping H, et al. Low-pass whole-genome sequencing in clinical cytogenetics: a validated approach[J]. Genet Med, 2016, 18(9): 940-948. DOI: 10.1038/gim.2015.199.
|
[8] |
|
[9] |
Wang J, Chen L, Cong Z, et al. Prospective chromosome analysis of 3 429 amniocentesis samples in China using copy number variation sequencing[J]. Am J Obstet Gynecol, 2018, 219(3): 287.el-287.e18. DOI: 10.1016/j.ajog.2018.05.030.
|
[10] |
Wang H, Dong Z, Rui Z, et al. Low-pass genome sequencing versus chromosomal microarray analysis: implementation in prenatal diagnosis[J]. Genet Med, 2020, 22(3): 500-510. DOI: 10.1038/s41436-019-0634-7.
|
[11] |
|
[12] |
Nevado J, Mergener R, Palomares-Bralo M, et al. New microdeletion and microduplication syndromes: a comprehensive review[J]. Genet Mol Biol, 2014, 37(1 Suppl): 210-219. DOI: 10.1590/s1415-47572014000200007.
|
[13] |
Farnaes L, Hildreth A, Sweeney N M, et al. Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization[J]. NPJ Genom Med, 2018, 3: 10. DOI: 10.1038/s41525-018-0049-4.
|
[14] |
Zhang J, Tang X, Hu J, et al. Investigation on combined copy number variation sequencing and cytogenetic karyotyping for prenatal diagnosis[J]. BMC Pregnancy Childbirth, 2021, 21(1): 496. DOI: 10.1186/s12884-021-03918-y.
|
[15] |
Marcou CA, Pitel B, Hagen CE, et al. Limited diagnostic impact of duplications<1 Mb of uncertain clinical significance: a 10-year retrospective analysis of reporting practices at the Mayo Clinic[J]. Genet Med, 2020, 22(12): 2120-2124. DOI: 10.1038/s41436-020-0932-0.
|
[16] |
Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen)[J]. Genet Med, 2020, 22(2): 245-257. DOI: 10.1038/s41436-019-0686-8.
|
[17] |
Shi P, Li R, Wang C, et al. Influence of validating the parental origin on the clinical interpretation of fetal copy number variations in 141 core family cases[J]. Mol Genet Genomic Med, 2019, 7(10): e00944. DOI: 10.1002/mgg3.944.
|