[1] |
Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it[J].Biotechnol Genet Eng Rev,1996,13:19-50. DOI: 10.1080/02648725.1996.10647923.
|
[2] |
Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: genitalium[J]. Electrophoresis,1995,16(7):1090-1094. DOI: 10.1002/elps.11501601185.
|
[3] |
Wu Y, Zhang J, Wang M, et al. Proteomics analysis indicated the protein expression pattern related to the development of fetal conotruncal defects[J].J Cell Physiol, 2019, 234(8): 13544-13556. DOI: 10.1002/jcp.28033.
|
[4] |
Xu C, Su X, Chen Y, et al. Proteomics analysis of plasma protein changes in patent ductus arteriosus patients[J].Ital J Pediatr,2020,46(1):64-70. DOI: 10.1186/s13052-020-00831-6.
|
[5] |
|
[6] |
Faber MJ, Agnetti G, Bezstarosti K, et al. Recent developments in proteomics: implications for the study of cardiac hypertrophy and failure[J].Cell Biochem Biophys, 2006,44(1):11-29. DOI: 10.1385/CBB:44:1:011.
|
[7] |
Gowda M, Thiagarajan M, Satheesh S, et al. Prenatal grading of fetal congenital heart disease and its influence on decision making during pregnancy and postnatal period: a prospective study[J].J Matern Fetal Neonatal Med, 2020: 1-9.DOI: 10.1080/14767058.2020.1814245.
|
[8] |
Hepponstall M, Konstantinov IE. Proteomics in paediatric cardiac surgery: is a personalised approach feasible?[J].Proteomics Clin Appl,2014,8(11-12):851-861.DOI: 10.1002/prca.201400054.
|
[9] |
|
[10] |
Banks RE, Dunn MJ, Hochstrasser DF, et al. Proteomics: new perspectives, new biomedical opportunities[J].Lancet,2000,356(9243):1749-1756. DOI: 10.1016/S0140-6736(00)03214-1.
|
[11] |
Macri J, Rapundalo ST. Application of proteomics to the study of cardiovascular biology[J]. Trends Cardiovasc Med,2001,11(2): 66-75. DOI: 10.1016/s1050-1738(01)00088-3.
|
[12] |
|
[13] |
Slagle CE, Conlon FL. Emerging field of cardiomics: high-throughput investigations into transcriptional regulation of cardiovascular development and disease[J]. Trends Genet,2016, 32(11): 707-716. DOI: 10.1016/j.tig.2016.09.002.
|
[14] |
|
[15] |
Zhang T, Yuan Q, Gu Z, et al. Advances of proteomics technologies for multidrug-resistant mechanisms[J]. Future Med Chem,2019,11(19):2573-2593. DOI: 10.4155/fmc-2018-0507.
|
[16] |
Graves PR, Haystead TA. Molecular biologist′s guide to proteomics[J]. Microbiol Mol Biol Rev,2002,66(1):39-63. DOI: 10.1128/mmbr.66.1.39-63.2002.
|
[17] |
|
[18] |
Westermeier R, Marouga R. Protein detection methods in proteomics research[J]. Biosci Rep,2005,25(1-2):19-32. DOI: 10.1007/s10540-005-2845-1.
|
[19] |
|
[20] |
Boutet E, Lieberherr D, Tognolli M, et al. UniProtKB/Swiss-Prot, the manually annotated section of the Uniprot knowledgebase: how to use the entry view[J]. Methods Mol Biol, 2016,1374:23-54. DOI: 10.1007/978-1-4939-3167-5-2.
|
[21] |
Wu WW, Wang G, Baek SJ, et al. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF[J]. J Proteome Res, 2006,5(3):651-658. DOI: 10.1021/pr050405o.
|
[22] |
Issaq HJ, Chan KC, Janini GM, et al. Multidimensional separation of peptides for effective proteomic analysis[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2005,817(1):35-47. DOI: 10.1016/j.jchromb.2004.07.042.
|
[23] |
Martyniuk CJ, Alvarez S, Denslow ND. DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology[J]. Ecotoxicol Environ Saf,2012,76(2):3-10. DOI: 10.1016/j.ecoenv.2011.09.020.
|
[24] |
Gan CS, Chong PK, Pham TK, et al. Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ)[J]. J Proteome Res, 2007,6(2):821-827. DOI: 10.1021/pr060474i.
|
[25] |
张海洋,牛春雨,赵自刚.血浆蛋白组学技术及其应用进展[J].中国微循环,2009,13(3):207-210.
|
[26] |
Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects[J]. Mol Cell Proteomics,2002,1(11):845-867. DOI: 10.1074/mcp.r200007-mcp200.
|
[27] |
Anderson NL, Polanski M, Pieper R, et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources[J]. Mol Cell Proteomics,2004,3(4):311-326. DOI: 10.1074/mcp.M300127-MCP200.
|
[28] |
Geho DH, Liotta LA, Petricoin EF, et al. The amplified peptidome: the new treasure chest of candidate biomarkers[J]. Curr Opin Chem Biol,2006,10(1):50-55. DOI: 10.1016/j.cbpa.2006.01.008.
|
[29] |
Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer[J]. Lancet,2002,359(9306):572-577.DOI: 10.1016/S0140-6736(02)07746-2.
|
[30] |
Granger J, Siddiqui J, Copeland S, et al. Albumin depletion of human plasma also removes low abundance proteins including the cytokines[J]. Proteomics,2005,5(18):4713-4718. DOI: 10.1002/pmic.200401331.
|
[31] |
Jäger D, Jungblut PR, Müller-Werdan U. Separation and identification of human heart proteins[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2002,771(1-2):131-153. DOI: 10.1016/s1570-0232(02)00039-9.
|
[32] |
Baker CS, Corbett JM, May AJ, et al. A human myocardial two-dimensional electrophoresis database: protein characterisation by microsequencing and immunoblotting[J]. Electrophoresis, 1992,13(9-10):723-726. DOI: 10.1002/elps.11501301154.
|
[33] |
Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome[J]. Science,2001,291(5507):1304-1351. DOI: 10.1126/science.105804.
|
[34] |
Jungblut P, Otto A, Regitz V, et al. Identification of human myocard proteins separated by two-dimensional electrophoresis[J]. Electrophoresis, 1992,13(9-10):739-741. DOI: 10.1002/elps.11501301159.
|
[35] |
Kovalyov LI, Shishkin SS, Efimochkin AS, et al. The major protein expression profile and two-dimensional protein database of human heart[J]. Electrophoresis, 1995,16(7):1160-1169. DOI: 10.1002/elps.11501601192.
|
[36] |
Pleissner KP, Söding P, Sander S, et al. Dilated cardiomyopathy-associated proteins and their presentation in a WWW-accessible two-dimensional gel protein database[J]. Electrophoresis,1997,18(5):802-808. DOI: 10.1002/elps.1150180525.
|
[37] |
Chen L, Guan J, Wei Q, et al. Potential role of " omics" technique in prenatal diagnosis of congenital heart defects[J].Clin Chim Acta,2018,482(1):185-190. DOI: 10.1016/j.cca.2018.04.011.
|
[38] |
Koster MP, Pennings JL, Imholz S, et al. Proteomics and Down syndrome screening: a validation study[J]. Prenat Diagn,2010,30(11):1039-1043. DOI: 10.1002/pd.2606.
|
[39] |
Auer J, Camoin L, Guillonneau F, et al. Serum profile in preeclampsia and intra-uterine growth restriction revealed by iTRAQ technology[J]. J Proteomics,2010,73(5):1004-1017. DOI: 10.1016/j.jprot.2009.12.014.
|
[40] |
An D, Wei X, Li H, et al. Identification of PCSK9 as a novel serum biomarker for the prenatal diagnosis of neural tube defects using iTRAQ quantitative proteomics[J]. Sci Rep, 2015,5:17559. DOI: 10.1038/srep17559.
|
[41] |
Chen L, Gu H, Li J, et al. Comprehensive maternal serum proteomics identifies the cytoskeletal proteins as non-invasive biomarkers in prenatal diagnosis of congenital heart defects[J]. Sci Rep, 2016,6:19248. DOI: 10.1038/srep19248.
|
[42] |
Zhang X, Sun Y, Zhu J, et al. Epidemiology, prenatal diagnosis, and neonatal outcomes of congenital heart defects in eastern China: a hospital-based multicenter study[J]. BMC Pediatr, 2020,20(1):416. DOI: 10.1186/s12887-020-02313-4.
|
[43] |
Zhu H, Kartiko S, Finnell RH. Importance of gene-environment interactions in the etiology of selected birth defects[J]. Clin Genet,2009,75(5):409-423. DOI: 10.1111/j.1399-0004.2009.01174.x.
|
[44] |
Nath AK, Krauthammer M, Li P, et al. Proteomic-based detection of a protein cluster dysregulated during cardiovascular development identifies biomarkers of congenital heart defects[J]. PLoS One,2009,4(1):e4221. DOI: 10.1371/journal.pone.0004221.
|
[45] |
Chigusa S, Moroi T, Shoji Y. State-of-the-art calculation of the decay rate of electroweak vacuum in the standard model[J]. Phys Rev Lett,2017,119(21):211801. DOI: 10.1103/PhysRevLett.119.211801.
|
[46] |
Dorr KM, Conlon FL. Proteomic-based approaches to cardiac development and disease[J]. Curr Opin Chem Biol,2019,48:150-157. DOI: 10.1016/j.cbpa.2019.01.001.
|
[47] |
Xuan C, Gao G, Yang Q, et al. Proteomic study reveals plasma protein changes in congenital heart diseases[J]. Ann Thorac Surg,2014,97(4):1414-1419. DOI: 10.1016/j.athoracsur.2013.11.069.
|
[48] |
Witke W, Sharpe AH, Hartwig JH, et al. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin[J].Cell,1995,81(1):41-51. DOI: 10.1016/0092-8674(95)90369-0.
|
[49] |
Tempe DK, Virmani S. Coagulation abnormalities in patients with cyanotic congenital heart disease[J]. J Cardiothorac Vasc Anesth,2002,16(6):752-765. DOI: 10.1053/jcan.2002.128436.
|
[50] |
Munthe-Fog L, Hummelshøj T, Honoré C, et al. Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency[J]. N Engl J Med,2009,360(25):2637-2644. DOI: 10.1056/NEJMoa0900381.
|
[51] |
Huang Q, Geng Z, Chen T, et al. Comparative proteomic analysis of plasma of children with congenital heart disease[J]. Electrophoresis, 2019,40(14):1848-1854. DOI: 10.1002/elps.201900098.
|
[52] |
Vekich JA, Belmont PJ, Thuerauf DJ, et al. Protein disulfide isomerase-associated 6 is an ATF6-inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion-mediated cell death[J]. J Mol Cell Cardiol,2012,53(2):259-267. DOI: 10.1016/j.yjmcc.2012.05.005.
|
[53] |
Groenendyk J, Peng Z, Dudek E, et al. Interplay between the oxidoreductase PDIA6 and microRNA-322 controls the response to disrupted endoplasmic reticulum calcium homeostasis[J]. Sci Signal,2014,7(329):ra54. DOI: 10.1126/scisignal.2004983.
|
[54] |
Prins D, Michalak M. Endoplasmic reticulum proteins in cardiac development and dysfunction[J]. Can J Physiol Pharmacol,2009,87(6):419-425. DOI: 10.1139/y09-032.
|
[55] |
Tumani H, Lehmensiek V, Lehnert S, et al. 2D DIGE of the cerebrospinal fluid proteome in neurological diseases[J]. Expert Rev Proteomics,2010,7(1):29-38. DOI: 10.1586/epr.09.99.
|