切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2020, Vol. 16 ›› Issue (06) : 627 -633. doi: 10.3877/cma.j.issn.1673-5250.2020.06.002

所属专题: 文献

专题论坛

蛋白质组学在先天性心脏病中的研究现状
何静1, 刘瀚旻1,()   
  1. 1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2020-08-11 修回日期:2020-11-17 出版日期:2020-12-01
  • 通信作者: 刘瀚旻

Current researches status on proteomics in congenital heart disease

Jing He1, Hanmin Liu1,()   

  1. 1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2020-08-11 Revised:2020-11-17 Published:2020-12-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    National Natural Science Foundation of China(81673257); National Program on Key Basic Research Project (973 Program)(2017CB511905)
引用本文:

何静, 刘瀚旻. 蛋白质组学在先天性心脏病中的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(06): 627-633.

Jing He, Hanmin Liu. Current researches status on proteomics in congenital heart disease[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(06): 627-633.

随着数据库中大量DNA序列的积累,研究人员越来越意识到,仅具有心血管疾病患者完整的基因组序列和数千个基因的转录变化,不足以从分子角度阐明心血管疾病的发病机制。基因组序列中开放阅读框的存在,并不意味着功能基因的存在。随着后基因组(postgenome)时代的到来,蛋白质组学(proteomics)作为一门采用大规模、高通量、系统化技术研究某一类型细胞、组织或体液中所有蛋白质组成及其功能的新兴学科,旨在从整体角度全面分析细胞内蛋白质表达水平和修饰状态的动态变化,了解细胞内蛋白质之间相互作用,从而揭示蛋白质功能和细胞生命活动规律。蛋白质组学专门从蛋白质角度研究生物学和病理生理学问题。先天性心脏病(CHD)作为我国活产儿首要的出生缺陷,是导致婴幼儿死亡和CHD相关并发症发生的主要原因之一,对CHD患儿早期诊断和干预是关键,超声检查是目前临床常用的CHD筛查策略,但是不适于对该病的早期筛查,而蛋白质组学可绘制心脏在任何时间和条件下表达的全部蛋白质,通过差异表达蛋白质分析,可确定与CHD病因及其进展、结果和治疗反应相关蛋白质变化。鉴定这些与CHD相关的特异表达蛋白质,研究其表达水平、翻译后修饰状态及功能特征,则是各种类型CHD病因及病理生理研究的基础和关键。笔者拟就蛋白质组学技术及分类、在CHD诊治及预后评估中的应用优势、最新研究现状、未来前景及展望进行阐述。

With accumulation of large numbers of DNA sequences in databases, researchers have become increasingly aware that the complete genome sequence and transcriptional changes of thousands of genes in patients with cardiovascular disease alone are not sufficient to elucidate the pathogenesis of cardiovascular disease from a molecular perspective.The presence of an open reading frame in a genome sequence does not necessarily imply the presence of a functional gene. With the advent of the postgenome era, proteomics as a large-scale, high-flux, systematic emerging discipline, researches a particular type of all proteins in cells, tissues or body fluids through a variety of technologies, aims to analyze dynamic changes of protein expression in cells and modification status, understand the interaction between proteins in cells, and thus reveal protein function and cell life activities.Proteomics specializes in study of biological and pathophysiological issues from the perspective of proteins. Congenital heart disease (CHD) is the leading birth defect in China and one of the main causes of infants death and CHD-related complications, the early diagnosis and intervention of CHD is the key to CHD, ultrasound is a common screening method for CHD in clinical practice, but is not suitable for early screening of CHD, proteomics can map all proteins expressed in heart at any time and under any conditions, and determine the protein changes related to etiology, progression, outcome and treatment response of CHD through analysis of differential expressed proteins. The identification of these CHD-related specific proteins and to study their expression patterns, post-translational modification status and functional characteristics are the basis and key to etiology and pathophysiology of various types of CHD.This article focus on research status of technology and classification of proteomics, advantages and application of proteomics in diagnosis, treatment and prognosis evaluation of CHD, and the future prospects and prospects of proteomics.

[1]
Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it[J].Biotechnol Genet Eng Rev,1996,13:19-50. DOI:10.1080/02648725.1996.10647923.
[2]
Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: genitalium[J]. Electrophoresis,1995,16(7):1090-1094. DOI:10.1002/elps.11501601185.
[3]
Wu Y, Zhang J, Wang M, et al. Proteomics analysis indicated the protein expression pattern related to the development of fetal conotruncal defects[J].J Cell Physiol, 2019, 234(8): 13544-13556. DOI: 10.1002/jcp.28033.
[4]
Xu C, Su X, Chen Y, et al. Proteomics analysis of plasma protein changes in patent ductus arteriosus patients[J].Ital J Pediatr,2020,46(1):64-70. DOI:10.1186/s13052-020-00831-6.
[5]
景洪标,丁华野,丁彦青.蛋白质组学及其在乳腺癌研究中的应用[J].临床与实验病理学杂志,2005,21(1):110-111.DOI:10.3969/j.issn.1001-7399.2005.01.029.
[6]
Faber MJ, Agnetti G, Bezstarosti K, et al. Recent developments in proteomics: implications for the study of cardiac hypertrophy and failure[J].Cell Biochem Biophys, 2006,44(1):11-29. DOI:10.1385/CBB:44:1:011.
[7]
Gowda M, Thiagarajan M, Satheesh S, et al. Prenatal grading of fetal congenital heart disease and its influence on decision making during pregnancy and postnatal period: a prospective study[J].J Matern Fetal Neonatal Med, 2020: 1-9.DOI: 10.1080/14767058.2020.1814245.
[8]
Hepponstall M, Konstantinov IE. Proteomics in paediatric cardiac surgery: is a personalised approach feasible?[J].Proteomics Clin Appl,2014,8(11-12):851-861.DOI:10.1002/prca.201400054.
[9]
郁夏风,刘锦纷.蛋自质组学与先天性心脏病形成机制的研究现状[J].临床儿科杂志,2011,29(7):696-698.DOI:10.3969/j.issn.1000-3606.2011.07.025.
[10]
Banks RE, Dunn MJ, Hochstrasser DF, et al. Proteomics: new perspectives, new biomedical opportunities[J].Lancet,2000,356(9243):1749-1756. DOI: 10.1016/S0140-6736(00)03214-1.
[11]
Macri J, Rapundalo ST. Application of proteomics to the study of cardiovascular biology[J]. Trends Cardiovasc Med,2001,11(2): 66-75. DOI: 10.1016/s1050-1738(01)00088-3.
[12]
Dunn MJ. Studying heart disease using the proteomic approach[J]. Drug Discov Today, 2000, 5(2): 76-84. DOI:10.1016/s1359-6446(99)01449-x.
[13]
Slagle CE, Conlon FL. Emerging field of cardiomics: high-throughput investigations into transcriptional regulation of cardiovascular development and disease[J]. Trends Genet,2016, 32(11): 707-716. DOI: 10.1016/j.tig.2016.09.002.
[14]
Jung E, Heller M, Sanchez JC, et al. Proteomics meets cell biology: the establishment of subcellular proteomes[J]. Electrophoresis, 2000,21(16):3369-3377. DOI:10.1002/1522-2683(20001001)21:16<3369::AID-ELPS3369>3.0.CO;2-7.
[15]
Zhang T, Yuan Q, Gu Z, et al. Advances of proteomics technologies for multidrug-resistant mechanisms[J]. Future Med Chem,2019,11(19):2573-2593. DOI:10.4155/fmc-2018-0507.
[16]
Graves PR, Haystead TA. Molecular biologist′s guide to proteomics[J]. Microbiol Mol Biol Rev,2002,66(1):39-63. DOI:10.1128/mmbr.66.1.39-63.2002.
[17]
Meleady P. Two-dimensional gel electrophoresis and 2D-DIGE[J]. Methods Mol Biol,2018,1664:3-14. DOI:10.1007/978-1-4939-7268-5_1.
[18]
Westermeier R, Marouga R. Protein detection methods in proteomics research[J]. Biosci Rep,2005,25(1-2):19-32. DOI:10.1007/s10540-005-2845-1.
[19]
Loscalzo J. Proteomics in cardiovascular biology and medicine[J]. Circulation,2003,108(4):380-383. DOI:10.1161/01.CIR.0000079867.56212.17.
[20]
Boutet E, Lieberherr D, Tognolli M, et al. UniProtKB/Swiss-Prot, the manually annotated section of the Uniprot knowledgebase: how to use the entry view[J]. Methods Mol Biol, 2016,1374:23-54. DOI:10.1007/978-1-4939-3167-5-2.
[21]
Wu WW, Wang G, Baek SJ, et al. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF[J]. J Proteome Res, 2006,5(3):651-658. DOI:10.1021/pr050405o.
[22]
Issaq HJ, Chan KC, Janini GM, et al. Multidimensional separation of peptides for effective proteomic analysis[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2005,817(1):35-47. DOI:10.1016/j.jchromb.2004.07.042.
[23]
Martyniuk CJ, Alvarez S, Denslow ND. DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology[J]. Ecotoxicol Environ Saf,2012,76(2):3-10. DOI:10.1016/j.ecoenv.2011.09.020.
[24]
Gan CS, Chong PK, Pham TK, et al. Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ)[J]. J Proteome Res, 2007,6(2):821-827. DOI:10.1021/pr060474i.
[25]
张海洋,牛春雨,赵自刚.血浆蛋白组学技术及其应用进展[J].中国微循环,2009,13(3):207-210.
[26]
Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects[J]. Mol Cell Proteomics,2002,1(11):845-867. DOI:10.1074/mcp.r200007-mcp200.
[27]
Anderson NL, Polanski M, Pieper R, et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources[J]. Mol Cell Proteomics,2004,3(4):311-326. DOI:10.1074/mcp.M300127-MCP200.
[28]
Geho DH, Liotta LA, Petricoin EF, et al. The amplified peptidome: the new treasure chest of candidate biomarkers[J]. Curr Opin Chem Biol,2006,10(1):50-55. DOI:10.1016/j.cbpa.2006.01.008.
[29]
Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer[J]. Lancet,2002,359(9306):572-577.DOI:10.1016/S0140-6736(02)07746-2.
[30]
Granger J, Siddiqui J, Copeland S, et al. Albumin depletion of human plasma also removes low abundance proteins including the cytokines[J]. Proteomics,2005,5(18):4713-4718. DOI:10.1002/pmic.200401331.
[31]
Jäger D, Jungblut PR, Müller-Werdan U. Separation and identification of human heart proteins[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2002,771(1-2):131-153. DOI:10.1016/s1570-0232(02)00039-9.
[32]
Baker CS, Corbett JM, May AJ, et al. A human myocardial two-dimensional electrophoresis database: protein characterisation by microsequencing and immunoblotting[J]. Electrophoresis, 1992,13(9-10):723-726. DOI:10.1002/elps.11501301154.
[33]
Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome[J]. Science,2001,291(5507):1304-1351. DOI:10.1126/science.105804.
[34]
Jungblut P, Otto A, Regitz V, et al. Identification of human myocard proteins separated by two-dimensional electrophoresis[J]. Electrophoresis, 1992,13(9-10):739-741. DOI:10.1002/elps.11501301159.
[35]
Kovalyov LI, Shishkin SS, Efimochkin AS, et al. The major protein expression profile and two-dimensional protein database of human heart[J]. Electrophoresis, 1995,16(7):1160-1169. DOI:10.1002/elps.11501601192.
[36]
Pleissner KP, Söding P, Sander S, et al. Dilated cardiomyopathy-associated proteins and their presentation in a WWW-accessible two-dimensional gel protein database[J]. Electrophoresis,1997,18(5):802-808. DOI:10.1002/elps.1150180525.
[37]
Chen L, Guan J, Wei Q, et al. Potential role of " omics" technique in prenatal diagnosis of congenital heart defects[J].Clin Chim Acta,2018,482(1):185-190. DOI:10.1016/j.cca.2018.04.011.
[38]
Koster MP, Pennings JL, Imholz S, et al. Proteomics and Down syndrome screening: a validation study[J]. Prenat Diagn,2010,30(11):1039-1043. DOI:10.1002/pd.2606.
[39]
Auer J, Camoin L, Guillonneau F, et al. Serum profile in preeclampsia and intra-uterine growth restriction revealed by iTRAQ technology[J]. J Proteomics,2010,73(5):1004-1017. DOI:10.1016/j.jprot.2009.12.014.
[40]
An D, Wei X, Li H, et al. Identification of PCSK9 as a novel serum biomarker for the prenatal diagnosis of neural tube defects using iTRAQ quantitative proteomics[J]. Sci Rep, 2015,5:17559. DOI:10.1038/srep17559.
[41]
Chen L, Gu H, Li J, et al. Comprehensive maternal serum proteomics identifies the cytoskeletal proteins as non-invasive biomarkers in prenatal diagnosis of congenital heart defects[J]. Sci Rep, 2016,6:19248. DOI:10.1038/srep19248.
[42]
Zhang X, Sun Y, Zhu J, et al. Epidemiology, prenatal diagnosis, and neonatal outcomes of congenital heart defects in eastern China: a hospital-based multicenter study[J]. BMC Pediatr, 2020,20(1):416. DOI:10.1186/s12887-020-02313-4.
[43]
Zhu H, Kartiko S, Finnell RH. Importance of gene-environment interactions in the etiology of selected birth defects[J]. Clin Genet,2009,75(5):409-423. DOI:10.1111/j.1399-0004.2009.01174.x.
[44]
Nath AK, Krauthammer M, Li P, et al. Proteomic-based detection of a protein cluster dysregulated during cardiovascular development identifies biomarkers of congenital heart defects[J]. PLoS One,2009,4(1):e4221. DOI:10.1371/journal.pone.0004221.
[45]
Chigusa S, Moroi T, Shoji Y. State-of-the-art calculation of the decay rate of electroweak vacuum in the standard model[J]. Phys Rev Lett,2017,119(21):211801. DOI:10.1103/PhysRevLett.119.211801.
[46]
Dorr KM, Conlon FL. Proteomic-based approaches to cardiac development and disease[J]. Curr Opin Chem Biol,2019,48:150-157. DOI:10.1016/j.cbpa.2019.01.001.
[47]
Xuan C, Gao G, Yang Q, et al. Proteomic study reveals plasma protein changes in congenital heart diseases[J]. Ann Thorac Surg,2014,97(4):1414-1419. DOI:10.1016/j.athoracsur.2013.11.069.
[48]
Witke W, Sharpe AH, Hartwig JH, et al. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin[J].Cell,1995,81(1):41-51. DOI:10.1016/0092-8674(95)90369-0.
[49]
Tempe DK, Virmani S. Coagulation abnormalities in patients with cyanotic congenital heart disease[J]. J Cardiothorac Vasc Anesth,2002,16(6):752-765. DOI:10.1053/jcan.2002.128436.
[50]
Munthe-Fog L, Hummelshøj T, Honoré C, et al. Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency[J]. N Engl J Med,2009,360(25):2637-2644. DOI:10.1056/NEJMoa0900381.
[51]
Huang Q, Geng Z, Chen T, et al. Comparative proteomic analysis of plasma of children with congenital heart disease[J]. Electrophoresis, 2019,40(14):1848-1854. DOI:10.1002/elps.201900098.
[52]
Vekich JA, Belmont PJ, Thuerauf DJ, et al. Protein disulfide isomerase-associated 6 is an ATF6-inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion-mediated cell death[J]. J Mol Cell Cardiol,2012,53(2):259-267. DOI:10.1016/j.yjmcc.2012.05.005.
[53]
Groenendyk J, Peng Z, Dudek E, et al. Interplay between the oxidoreductase PDIA6 and microRNA-322 controls the response to disrupted endoplasmic reticulum calcium homeostasis[J]. Sci Signal,2014,7(329):ra54. DOI:10.1126/scisignal.2004983.
[54]
Prins D, Michalak M. Endoplasmic reticulum proteins in cardiac development and dysfunction[J]. Can J Physiol Pharmacol,2009,87(6):419-425. DOI:10.1139/y09-032.
[55]
Tumani H, Lehmensiek V, Lehnert S, et al. 2D DIGE of the cerebrospinal fluid proteome in neurological diseases[J]. Expert Rev Proteomics,2010,7(1):29-38. DOI:10.1586/epr.09.99.
[1] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[2] 吴群, 张鑫, 李培, 王芳韵, 郑淋, 卫海燕, 马宁. 孤立型主动脉缩窄的超声心动图诊断及术后随访研究[J]. 中华医学超声杂志(电子版), 2023, 20(06): 642-646.
[3] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[4] 李博, 孔德璇, 彭芳华, 吴文瑛. 超声在胎儿肺静脉异位引流诊断中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(04): 437-441.
[5] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[6] 娄丽丽, 刘瀚旻. 儿童狼疮性肾炎相关肾小管间质损伤的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 373-378.
[7] 韩春颖, 王婷婷, 李艳艳, 朴金霞. 子宫内膜癌患者淋巴管间隙浸润预测因素研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 403-409.
[8] 匡德凤, 李志国, 华绍芳, 薛凤霞. 高脂诱导孕鼠血清及胎盘组织脂肪酸结合蛋白-4及相关脂蛋白水平变化及其意义[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 338-344.
[9] 张雯, 徐宏燕, 张彦春, 刘凯波. 2017—2021年北京市先天性心脏病流行病学资料分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 61-68.
[10] 樊丽超, 郭瑾瑛, 陈鑫. 野生型RET与RET/PTC融合基因检测对甲状腺乳头状癌中央区淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 631-635.
[11] 王勇, 黄铁模, 于守君. RPS21在肝细胞癌中的表达及与免疫浸润和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 413-417.
[12] 李晖, 范志勇, 耿西林, 常虎林, 吴武军, 张煜. 肝癌中线粒体膜蛋白ATAD3A表达与临床病理特征及预后的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 157-161.
[13] 吕靖芳, 黄海洋, 刘恩瑞, 庄孟, 王锡山. PD-1抗体/PD-L1抗体在结直肠癌治疗中的应用现状及展望[J]. 中华结直肠疾病电子杂志, 2023, 12(01): 70-74.
[14] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[15] 滕振, 闫波. 转录因子HAND1基因多态性在心血管疾病中的研究进展[J]. 中华诊断学电子杂志, 2023, 11(01): 5-11.
阅读次数
全文


摘要