切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2020, Vol. 16 ›› Issue (06) : 621 -626. doi: 10.3877/cma.j.issn.1673-5250.2020.06.001

所属专题: 文献

述评

川崎病患儿冠状动脉微循环功能评估及其临床应用研究现状
周忠琴1, 文凌仪1, 郭应坤1,()   
  1. 1. 四川大学华西第二医院放射科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2020-04-03 修回日期:2020-10-12 出版日期:2020-12-01
  • 通信作者: 郭应坤

Current status of evaluation and clinical application research on coronary microcirculation dysfunction in children with Kawasaki disease

Zhongqin Zhou1, Lingyi Wen1, Yingkun Guo1,()   

  1. 1. Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2020-04-03 Revised:2020-10-12 Published:2020-12-01
  • Corresponding author: Yingkun Guo
  • Supported by:
    National Natural Science Foundation of China(81771897, 81971586); Chengdu Key Research and Development Support Program Project(2018-YFYF-00017-SN)
引用本文:

周忠琴, 文凌仪, 郭应坤. 川崎病患儿冠状动脉微循环功能评估及其临床应用研究现状[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(06): 621-626.

Zhongqin Zhou, Lingyi Wen, Yingkun Guo. Current status of evaluation and clinical application research on coronary microcirculation dysfunction in children with Kawasaki disease[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(06): 621-626.

川崎病(Kawasaki disease)是一种以急性全身血管炎为主要病理改变的疾病,好发于年龄<5岁婴幼儿,是婴幼儿获得性冠状动脉疾病最常见病因。川崎病导致的心血管疾病并发症,严重影响患儿预后。近年川崎病所致患儿冠状动脉微循环功能障碍,逐渐引起重视。冠状动脉内多普勒(ICD)、经胸超声心动图(TTE)、正电子发射计算机断层显像(PET)、单光子发射计算机断层显像(SPECT)及心血管MRI(CMR)等影像学技术,均可定量监测川崎病患儿冠状动脉血流储备(CFR)和微循环系统功能异常,但是监测效果各有优、缺点。笔者拟就冠状动脉微循环功能障碍的发生机制及其影像学诊断技术的最新研究进展、临床应用等进行阐述,旨在为川崎病患儿冠状动脉微循环功能障碍的临床精准量化、长期监测和预后评价提供帮助。

Kawasaki disease is an acute systemic vasculitis, which predominantly occurs in children<5 years old. Kawasaki disease is leading cause of acquired coronary artery diseases in children, and its cardiovascular complications affect prognosis of patients. In recent years, coronary microcirculation dysfunction caused by Kawasaki disease has aroused a lot of research concern and clinical attention. Some imaging modalities can sensitively detect and quantitatively measure coronary flow reserve (CFR) and microcirculation dysfunction in children with Kawasaki disease, including intracoronary Doppler (ICD), transthoracic echocardiography (TTE), positron emission computed tomography (PET), single-proton emission computed tomography (SPECT), and cardiovascular magnetic resonance (CMR). However, each method has its advantages and limitations. This paper reviews latest research progresses in mechanism of coronary microcirculation dysfunction and their diagnostic imaging technology and clinical application, aiming to improve accurate quantification, long-term monitoring and prognosis evaluation of coronary microcirculation dysfunction in children with Kawasaki disease.

表1 对川崎病患儿冠状动脉微循环功能的影像学评价方法比较
[1]
Newburger JW, Takahashi M, Burns JC. Kawasaki disease[J]. J Am Coll Cardiol, 2016, 67(14): 1738-1749. DOI:10.1016/j.jacc.2015.12.073.
[2]
Furuyama H, Odagawa Y, Katoh C, et al. Altered myocardial flow reserve and endothelial function late after Kawasaki disease[J]. J Pediatr, 2003, 142(2): 149-154. DOI:10.1067/mpd.2003.46.
[3]
Cicala S, Galderisi M, Grieco M, et al. Transthoracic echo-Doppler assessment of coronary microvascular function late after Kawasaki disease[J]. Pediatr Cardiol, 2008, 29(2): 321-327. DOI:10.1007/s00246-007-9030-1.
[4]
Hamaoka K, Onouchi Z, Kamiya Y, et al. Evaluation of coronary flow velocity dynamics and flow reserve in patients with Kawasaki disease by means of a Doppler guide wire[J]. J Am Coll Cardiol, 1998, 31(4): 833-840. DOI:10.1016/s0735-1097(98)00019-9.
[5]
McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999.DOI:10.1161/CIR.0000000000000484.
[6]
周倩沁,吴军华,邱海燕. 川崎病病因及发病机制的研究进展[J]. 浙江医学,2019, 41(13): 1443-1446. DOI:10.12056/j.issn.1006-2785.2019.41.13.2018-1232.
[7]
余莉,王一斌,乔莉娜,等. 川崎病并发冠状动脉损伤的危险因素分析[J/CD]. 中华妇幼临床医学杂志(电子版),2015,11(2): 240-243. DOI: 10.3877/cma.j.issn.1673-5250.2015.02.020.
[8]
Shah V, Christov G, Mukasa T, et al. Cardiovascular status after Kawasaki disease in the UK[J]. Heart, 2015, 101(20): 1646-1655. DOI:10.1136/heartjnl-2015-307734.
[9]
Takahashi K, Oharaseki T, Yokouchi Y. Histopathological aspects of cardiovascular lesions in Kawasaki disease[J]. Int J Rheum Dis, 2018, 21(1): 31-35. DOI:10.1111/1756-185X.13207.
[10]
Friesen RM, Schäfer M, Jone PN, et al. Myocardial perfusion reserve index in children with Kawasaki disease[J]. J Magn Reson Imaging, 2018, 48(1): 132-139. DOI:10.1002/jmri.25922.
[11]
Feher A, Sinusas AJ. Quantitative assessment of coronary microvascular function: dynamic single-photon emission computed tomography, positron emission tomography, ultrasound, computed tomography, and magnetic resonance imaging[J]. Circ Cardiovasc Imaging, 2017, 10(8): e006427. DOI:10.1161/CIRCIMAGING.117.006427.
[12]
Tsuda E, Singhal M. Role of imaging studies in Kawasaki disease[J]. Int J Rheum Dis, 2018, 21(1): 56-63. DOI:10.1111/1756-185X.13210.
[13]
Kantarcı M, Güven E, Ceviz N, et al. Vascular imaging findings with high-pitch low-dose dual-source CT in atypical Kawasaki disease[J]. Diagn Interv Radiol, 2019, 25(1): 50-54. DOI:10.5152/dir.2018.18092.
[14]
Jrad M, Ben Salem F, Barhoumi C, et al. The role of computed tomography coronary angiography in Kawasaki disease: comparison with transthoracic echocardiography in a 25-case retrospective study[J]. Pediatr Cardiol, 2019, 40(2): 265-275. DOI:10.1007/s00246-018-2044-z.
[15]
de Ferranti SD, Gauvreau K, Friedman KG, et al. Association of initially normal coronary arteries with normal findings on follow-up echocardiography in patients with Kawasaki disease[J]. JAMA Pediatr, 2018, 172(12): e183310. DOI:10.1001/jamapediatrics.2018.3310.
[16]
Cicala S, Pellegrino T, Storto G, et al. Noninvasive quantification of coronary endothelial function by SPECT imaging in children with a history of Kawasaki disease[J]. Eur J Nucl Med Mol Imaging, 2010, 37(12): 2249-2255. DOI:10.1007/s00259-010-1575-1.
[17]
Yoshinaga K, Manabe O, Tamaki N. Absolute quantification of myocardial blood flow[J]. J Nucl Cardiol, 2018, 25(2): 635-651. DOI:10.1007/s12350-016-0591-3.
[18]
中华医学会心血管病学分会基础研究学组,中华医学会心血管病学分会介入心脏病学组,中华医学会心血管病学分会女性心脏健康学组,等. 冠状动脉微血管疾病诊断和治疗的中国专家共识[J]. 中国循环杂志,2017, 32(5): 421-430. DOI: 10.3969/j.issn.1000-3614.2017.05.003.
[19]
Noto N, Karasawa K, Kanamaru H, et al. Non-invasive measurement of coronary flow reserve in children with Kawasaki disease[J]. Heart, 2002, 87(6): 559-565. DOI:10.1136/heart.87.6.559.
[20]
Yang N, Su YF, Li WW, et al. Microcirculation function assessed by adenosine triphosphate stress myocardial contrast echocardiography and prognosis in patients with nonobstructive coronary artery disease[J]. Medicine (Baltimore), 2019, 98(27): e15990. DOI:10.1097/MD.0000000000015990.
[21]
Pathan F, Marwick TH. Myocardial perfusion imaging using contrast echocardiography[J]. Prog Cardiovasc Dis, 2015, 57(6): 632-643. DOI:10.1016/j.pcad.2015.03.005.
[22]
Pelletier-Galarneau M, Martineau P, El Fakhri G. Quantification of PET myocardial blood flow[J]. Curr Cardiol Rep, 2019, 21(3): 11. DOI:10.1007/s11886-019-1096-x.
[23]
Hauser M, Bengel F, Kuehn A, et al. Myocardial blood flow and coronary flow reserve in children with " normal" epicardial coronary arteries after the onset of Kawasaki disease assessed by positron emission tomography[J]. Pediatr Cardiol, 2004, 25(2): 108-112. DOI:10.1007/s00246-003-0472-9.
[24]
Muzik O, Paridon SM, Singh TP, et al. Quantification of myocardial blood flow and flow reserve in children with a history of Kawasaki disease and normal coronary arteries using positron emission tomography[J]. J Am Coll Cardiol, 1996, 28(3): 757-762. DOI:10.1016/0735-1097(96)00199-4.
[25]
Khaing T, Raymond C, Chan WX, et al. Quantification of myocardial blood flow and myocardial flow reserve with SPECT imaging technique[J]. J Nucl Cardiol, 2019, 26(1): 318-323. DOI:10.1007/s12350-017-1152-0.
[26]
Otaki Y, Manabe O, Miller R, et al. Quantification of myocardial blood flow by CZT-SPECT with motion correction and comparison with 15O-water PET[J]. J Nucl Cardiol, 2019, 26(5) : 1501-1504. DOI:10.1007/s12350-019-01854-1.
[27]
Abe M, Fukazawa R, Ogawa S, et al. Usefulness of single photon emission computed tomography/computed tomography fusion-hybrid imaging to evaluate coronary artery disorders in patients with a history of Kawasaki disease[J]. J Nippon Med Sch, 2016, 83(2): 71-80. DOI:10.1272/jnms.83.71.
[28]
Bratis K, Chiribiri A, Hussain T, et al. Abnormal myocardial perfusion in Kawasaki disease convalescence[J]. JACC Cardiovasc Imaging, 2015, 8(1): 106-108. DOI:10.1016/j.jcmg.2014.05.017.
[29]
Muthusami P, Luining W, McCrindle B, et al. Myocardial perfusion, fibrosis, and contractility in children with Kawasaki disease[J]. JACC Cardiovasc Imaging, 2018, 11(12): 1922-1924. DOI:10.1016/j.jcmg.2018.06.009.
[30]
Zorach B, Shaw PW, Bourque J, et al. Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease[J]. J Cardiovasc Magn Reson, 2018, 20(1): 14. DOI:10.1186/s12968-018-0435-1.
[31]
Yin L, Xu HY, Zheng SS, et al. 3.0 T magnetic resonance myocardial perfusion imaging for semi-quantitative evaluation of coronary microvascular dysfunction in hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2017, 33(12): 1949-1959. DOI:10.1007/s10554-017-1189-9.
[32]
Papanastasiou G, Williams MC, Dweck MR, et al. Quantitative assessment of myocardial blood flow in coronary artery disease by cardiovascular magnetic resonance: comparison of Fermi and distributed parameter modeling against invasive methods[J]. J Cardiovasc Magn Reson, 2016, 18(1): 57. DOI:10.1186/s12968-016-0270-1.
[33]
Mordini FE, Haddad T, Hsu LY, et al. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment[J]. JACC Cardiovasc Imaging, 2014, 7(1): 14-22. DOI:10.1016/j.jcmg.2013.08.014.
[34]
Engblom H, Xue H, Akil S, et al. Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography[J]. J Cardiovasc Magn Reson, 2017, 19(1): 78. DOI:10.1186/s12968-017-0388-9.
[35]
Coristine AJ, Chaptinel J, Ginami G, et al. Improved respiratory self-navigation for 3D radial acquisitions through the use of a pencil-beam 2D-T2 -prep for free-breathing, whole-heart coronary MRA[J]. Magn Reson Med, 2018, 79(3): 1293-1303. DOI:10.1002/mrm.26764.
[36]
吴建涛,刘峰,魏青政,等. 冠状动脉微循环功能评价方法的应用进展[J]. 微循环学杂志,2018, 28(4): 75-80. DOI:10.3969/j.issn.1005-1740.2018.04.016.
[1] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[2] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[3] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[4] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[5] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[6] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[7] 刘竹影, 周年苟, 李泳祺, 周丽斌. 空心环钻联合手术导板用于自体牙移植牙槽窝备洞[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 418-423.
[8] 吴少峰, 张轶男, 孙杰. 机器人辅助手术在儿童微创泌尿手术中的应用和展望[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 440-444.
[9] 朱良振, 于永刚, 陈杲, 廖松柏. 儿童高级别闭合性肾损伤肾动脉栓塞与手术探查的疗效比较[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 461-465,475.
[10] 王蕾, 王少华, 牛海珍, 尹腾飞. 儿童腹股沟疝围手术期风险预警干预[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 768-772.
[11] 李芳, 许瑞, 李洋洋, 石秀全. 循证医学理念在儿童腹股沟疝患者中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 782-786.
[12] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[13] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[14] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[15] 李静, 张玲玲, 邢伟. 兴趣诱导理念用于小儿手术麻醉诱导前的价值及其对家属满意度的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 812-817.
阅读次数
全文


摘要