[1] |
Newburger JW, Takahashi M, Burns JC. Kawasaki disease[J]. J Am Coll Cardiol, 2016, 67(14): 1738-1749. DOI: 10.1016/j.jacc.2015.12.073.
|
[2] |
Furuyama H, Odagawa Y, Katoh C, et al. Altered myocardial flow reserve and endothelial function late after Kawasaki disease[J]. J Pediatr, 2003, 142(2): 149-154. DOI: 10.1067/mpd.2003.46.
|
[3] |
Cicala S, Galderisi M, Grieco M, et al. Transthoracic echo-Doppler assessment of coronary microvascular function late after Kawasaki disease[J]. Pediatr Cardiol, 2008, 29(2): 321-327. DOI: 10.1007/s00246-007-9030-1.
|
[4] |
Hamaoka K, Onouchi Z, Kamiya Y, et al. Evaluation of coronary flow velocity dynamics and flow reserve in patients with Kawasaki disease by means of a Doppler guide wire[J]. J Am Coll Cardiol, 1998, 31(4): 833-840. DOI: 10.1016/s0735-1097(98)00019-9.
|
[5] |
McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999.DOI: 10.1161/CIR.0000000000000484.
|
[6] |
|
[7] |
|
[8] |
Shah V, Christov G, Mukasa T, et al. Cardiovascular status after Kawasaki disease in the UK[J]. Heart, 2015, 101(20): 1646-1655. DOI: 10.1136/heartjnl-2015-307734.
|
[9] |
Takahashi K, Oharaseki T, Yokouchi Y. Histopathological aspects of cardiovascular lesions in Kawasaki disease[J]. Int J Rheum Dis, 2018, 21(1): 31-35. DOI: 10.1111/1756-185X.13207.
|
[10] |
Friesen RM, Schäfer M, Jone PN, et al. Myocardial perfusion reserve index in children with Kawasaki disease[J]. J Magn Reson Imaging, 2018, 48(1): 132-139. DOI: 10.1002/jmri.25922.
|
[11] |
Feher A, Sinusas AJ. Quantitative assessment of coronary microvascular function: dynamic single-photon emission computed tomography, positron emission tomography, ultrasound, computed tomography, and magnetic resonance imaging[J]. Circ Cardiovasc Imaging, 2017, 10(8): e006427. DOI: 10.1161/CIRCIMAGING.117.006427.
|
[12] |
Tsuda E, Singhal M. Role of imaging studies in Kawasaki disease[J]. Int J Rheum Dis, 2018, 21(1): 56-63. DOI: 10.1111/1756-185X.13210.
|
[13] |
Kantarcı M, Güven E, Ceviz N, et al. Vascular imaging findings with high-pitch low-dose dual-source CT in atypical Kawasaki disease[J]. Diagn Interv Radiol, 2019, 25(1): 50-54. DOI: 10.5152/dir.2018.18092.
|
[14] |
Jrad M, Ben Salem F, Barhoumi C, et al. The role of computed tomography coronary angiography in Kawasaki disease: comparison with transthoracic echocardiography in a 25-case retrospective study[J]. Pediatr Cardiol, 2019, 40(2): 265-275. DOI: 10.1007/s00246-018-2044-z.
|
[15] |
de Ferranti SD, Gauvreau K, Friedman KG, et al. Association of initially normal coronary arteries with normal findings on follow-up echocardiography in patients with Kawasaki disease[J]. JAMA Pediatr, 2018, 172(12): e183310. DOI: 10.1001/jamapediatrics.2018.3310.
|
[16] |
Cicala S, Pellegrino T, Storto G, et al. Noninvasive quantification of coronary endothelial function by SPECT imaging in children with a history of Kawasaki disease[J]. Eur J Nucl Med Mol Imaging, 2010, 37(12): 2249-2255. DOI: 10.1007/s00259-010-1575-1.
|
[17] |
Yoshinaga K, Manabe O, Tamaki N. Absolute quantification of myocardial blood flow[J]. J Nucl Cardiol, 2018, 25(2): 635-651. DOI: 10.1007/s12350-016-0591-3.
|
[18] |
|
[19] |
Noto N, Karasawa K, Kanamaru H, et al. Non-invasive measurement of coronary flow reserve in children with Kawasaki disease[J]. Heart, 2002, 87(6): 559-565. DOI: 10.1136/heart.87.6.559.
|
[20] |
Yang N, Su YF, Li WW, et al. Microcirculation function assessed by adenosine triphosphate stress myocardial contrast echocardiography and prognosis in patients with nonobstructive coronary artery disease[J]. Medicine (Baltimore), 2019, 98(27): e15990. DOI: 10.1097/MD.0000000000015990.
|
[21] |
Pathan F, Marwick TH. Myocardial perfusion imaging using contrast echocardiography[J]. Prog Cardiovasc Dis, 2015, 57(6): 632-643. DOI: 10.1016/j.pcad.2015.03.005.
|
[22] |
Pelletier-Galarneau M, Martineau P, El Fakhri G. Quantification of PET myocardial blood flow[J]. Curr Cardiol Rep, 2019, 21(3): 11. DOI: 10.1007/s11886-019-1096-x.
|
[23] |
Hauser M, Bengel F, Kuehn A, et al. Myocardial blood flow and coronary flow reserve in children with " normal" epicardial coronary arteries after the onset of Kawasaki disease assessed by positron emission tomography[J]. Pediatr Cardiol, 2004, 25(2): 108-112. DOI: 10.1007/s00246-003-0472-9.
|
[24] |
Muzik O, Paridon SM, Singh TP, et al. Quantification of myocardial blood flow and flow reserve in children with a history of Kawasaki disease and normal coronary arteries using positron emission tomography[J]. J Am Coll Cardiol, 1996, 28(3): 757-762. DOI: 10.1016/0735-1097(96)00199-4.
|
[25] |
Khaing T, Raymond C, Chan WX, et al. Quantification of myocardial blood flow and myocardial flow reserve with SPECT imaging technique[J]. J Nucl Cardiol, 2019, 26(1): 318-323. DOI: 10.1007/s12350-017-1152-0.
|
[26] |
Otaki Y, Manabe O, Miller R, et al. Quantification of myocardial blood flow by CZT-SPECT with motion correction and comparison with 15O-water PET[J]. J Nucl Cardiol, 2019, 26(5) : 1501-1504. DOI: 10.1007/s12350-019-01854-1.
|
[27] |
Abe M, Fukazawa R, Ogawa S, et al. Usefulness of single photon emission computed tomography/computed tomography fusion-hybrid imaging to evaluate coronary artery disorders in patients with a history of Kawasaki disease[J]. J Nippon Med Sch, 2016, 83(2): 71-80. DOI: 10.1272/jnms.83.71.
|
[28] |
Bratis K, Chiribiri A, Hussain T, et al. Abnormal myocardial perfusion in Kawasaki disease convalescence[J]. JACC Cardiovasc Imaging, 2015, 8(1): 106-108. DOI: 10.1016/j.jcmg.2014.05.017.
|
[29] |
Muthusami P, Luining W, McCrindle B, et al. Myocardial perfusion, fibrosis, and contractility in children with Kawasaki disease[J]. JACC Cardiovasc Imaging, 2018, 11(12): 1922-1924. DOI: 10.1016/j.jcmg.2018.06.009.
|
[30] |
Zorach B, Shaw PW, Bourque J, et al. Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease[J]. J Cardiovasc Magn Reson, 2018, 20(1): 14. DOI: 10.1186/s12968-018-0435-1.
|
[31] |
Yin L, Xu HY, Zheng SS, et al. 3.0 T magnetic resonance myocardial perfusion imaging for semi-quantitative evaluation of coronary microvascular dysfunction in hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2017, 33(12): 1949-1959. DOI: 10.1007/s10554-017-1189-9.
|
[32] |
Papanastasiou G, Williams MC, Dweck MR, et al. Quantitative assessment of myocardial blood flow in coronary artery disease by cardiovascular magnetic resonance: comparison of Fermi and distributed parameter modeling against invasive methods[J]. J Cardiovasc Magn Reson, 2016, 18(1): 57. DOI: 10.1186/s12968-016-0270-1.
|
[33] |
Mordini FE, Haddad T, Hsu LY, et al. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment[J]. JACC Cardiovasc Imaging, 2014, 7(1): 14-22. DOI: 10.1016/j.jcmg.2013.08.014.
|
[34] |
Engblom H, Xue H, Akil S, et al. Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography[J]. J Cardiovasc Magn Reson, 2017, 19(1): 78. DOI: 10.1186/s12968-017-0388-9.
|
[35] |
Coristine AJ, Chaptinel J, Ginami G, et al. Improved respiratory self-navigation for 3D radial acquisitions through the use of a pencil-beam 2D-T2 -prep for free-breathing, whole-heart coronary MRA[J]. Magn Reson Med, 2018, 79(3): 1293-1303. DOI: 10.1002/mrm.26764.
|
[36] |
|