切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2020, Vol. 16 ›› Issue (06) : 621 -626. doi: 10.3877/cma.j.issn.1673-5250.2020.06.001

所属专题: 文献

述评

川崎病患儿冠状动脉微循环功能评估及其临床应用研究现状
周忠琴1, 文凌仪1, 郭应坤1,()   
  1. 1. 四川大学华西第二医院放射科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2020-04-03 修回日期:2020-10-12 出版日期:2020-12-01
  • 通信作者: 郭应坤

Current status of evaluation and clinical application research on coronary microcirculation dysfunction in children with Kawasaki disease

Zhongqin Zhou1, Lingyi Wen1, Yingkun Guo1,()   

  1. 1. Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2020-04-03 Revised:2020-10-12 Published:2020-12-01
  • Corresponding author: Yingkun Guo
  • Supported by:
    National Natural Science Foundation of China(81771897, 81971586); Chengdu Key Research and Development Support Program Project(2018-YFYF-00017-SN)
引用本文:

周忠琴, 文凌仪, 郭应坤. 川崎病患儿冠状动脉微循环功能评估及其临床应用研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2020, 16(06): 621-626.

Zhongqin Zhou, Lingyi Wen, Yingkun Guo. Current status of evaluation and clinical application research on coronary microcirculation dysfunction in children with Kawasaki disease[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(06): 621-626.

川崎病(Kawasaki disease)是一种以急性全身血管炎为主要病理改变的疾病,好发于年龄<5岁婴幼儿,是婴幼儿获得性冠状动脉疾病最常见病因。川崎病导致的心血管疾病并发症,严重影响患儿预后。近年川崎病所致患儿冠状动脉微循环功能障碍,逐渐引起重视。冠状动脉内多普勒(ICD)、经胸超声心动图(TTE)、正电子发射计算机断层显像(PET)、单光子发射计算机断层显像(SPECT)及心血管MRI(CMR)等影像学技术,均可定量监测川崎病患儿冠状动脉血流储备(CFR)和微循环系统功能异常,但是监测效果各有优、缺点。笔者拟就冠状动脉微循环功能障碍的发生机制及其影像学诊断技术的最新研究进展、临床应用等进行阐述,旨在为川崎病患儿冠状动脉微循环功能障碍的临床精准量化、长期监测和预后评价提供帮助。

Kawasaki disease is an acute systemic vasculitis, which predominantly occurs in children<5 years old. Kawasaki disease is leading cause of acquired coronary artery diseases in children, and its cardiovascular complications affect prognosis of patients. In recent years, coronary microcirculation dysfunction caused by Kawasaki disease has aroused a lot of research concern and clinical attention. Some imaging modalities can sensitively detect and quantitatively measure coronary flow reserve (CFR) and microcirculation dysfunction in children with Kawasaki disease, including intracoronary Doppler (ICD), transthoracic echocardiography (TTE), positron emission computed tomography (PET), single-proton emission computed tomography (SPECT), and cardiovascular magnetic resonance (CMR). However, each method has its advantages and limitations. This paper reviews latest research progresses in mechanism of coronary microcirculation dysfunction and their diagnostic imaging technology and clinical application, aiming to improve accurate quantification, long-term monitoring and prognosis evaluation of coronary microcirculation dysfunction in children with Kawasaki disease.

表1 对川崎病患儿冠状动脉微循环功能的影像学评价方法比较
[1]
Newburger JW, Takahashi M, Burns JC. Kawasaki disease[J]. J Am Coll Cardiol, 2016, 67(14): 1738-1749. DOI:10.1016/j.jacc.2015.12.073.
[2]
Furuyama H, Odagawa Y, Katoh C, et al. Altered myocardial flow reserve and endothelial function late after Kawasaki disease[J]. J Pediatr, 2003, 142(2): 149-154. DOI:10.1067/mpd.2003.46.
[3]
Cicala S, Galderisi M, Grieco M, et al. Transthoracic echo-Doppler assessment of coronary microvascular function late after Kawasaki disease[J]. Pediatr Cardiol, 2008, 29(2): 321-327. DOI:10.1007/s00246-007-9030-1.
[4]
Hamaoka K, Onouchi Z, Kamiya Y, et al. Evaluation of coronary flow velocity dynamics and flow reserve in patients with Kawasaki disease by means of a Doppler guide wire[J]. J Am Coll Cardiol, 1998, 31(4): 833-840. DOI:10.1016/s0735-1097(98)00019-9.
[5]
McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999.DOI:10.1161/CIR.0000000000000484.
[6]
周倩沁,吴军华,邱海燕. 川崎病病因及发病机制的研究进展[J]. 浙江医学,2019, 41(13): 1443-1446. DOI:10.12056/j.issn.1006-2785.2019.41.13.2018-1232.
[7]
余莉,王一斌,乔莉娜,等. 川崎病并发冠状动脉损伤的危险因素分析[J/CD]. 中华妇幼临床医学杂志(电子版),2015,11(2): 240-243. DOI: 10.3877/cma.j.issn.1673-5250.2015.02.020.
[8]
Shah V, Christov G, Mukasa T, et al. Cardiovascular status after Kawasaki disease in the UK[J]. Heart, 2015, 101(20): 1646-1655. DOI:10.1136/heartjnl-2015-307734.
[9]
Takahashi K, Oharaseki T, Yokouchi Y. Histopathological aspects of cardiovascular lesions in Kawasaki disease[J]. Int J Rheum Dis, 2018, 21(1): 31-35. DOI:10.1111/1756-185X.13207.
[10]
Friesen RM, Schäfer M, Jone PN, et al. Myocardial perfusion reserve index in children with Kawasaki disease[J]. J Magn Reson Imaging, 2018, 48(1): 132-139. DOI:10.1002/jmri.25922.
[11]
Feher A, Sinusas AJ. Quantitative assessment of coronary microvascular function: dynamic single-photon emission computed tomography, positron emission tomography, ultrasound, computed tomography, and magnetic resonance imaging[J]. Circ Cardiovasc Imaging, 2017, 10(8): e006427. DOI:10.1161/CIRCIMAGING.117.006427.
[12]
Tsuda E, Singhal M. Role of imaging studies in Kawasaki disease[J]. Int J Rheum Dis, 2018, 21(1): 56-63. DOI:10.1111/1756-185X.13210.
[13]
Kantarcı M, Güven E, Ceviz N, et al. Vascular imaging findings with high-pitch low-dose dual-source CT in atypical Kawasaki disease[J]. Diagn Interv Radiol, 2019, 25(1): 50-54. DOI:10.5152/dir.2018.18092.
[14]
Jrad M, Ben Salem F, Barhoumi C, et al. The role of computed tomography coronary angiography in Kawasaki disease: comparison with transthoracic echocardiography in a 25-case retrospective study[J]. Pediatr Cardiol, 2019, 40(2): 265-275. DOI:10.1007/s00246-018-2044-z.
[15]
de Ferranti SD, Gauvreau K, Friedman KG, et al. Association of initially normal coronary arteries with normal findings on follow-up echocardiography in patients with Kawasaki disease[J]. JAMA Pediatr, 2018, 172(12): e183310. DOI:10.1001/jamapediatrics.2018.3310.
[16]
Cicala S, Pellegrino T, Storto G, et al. Noninvasive quantification of coronary endothelial function by SPECT imaging in children with a history of Kawasaki disease[J]. Eur J Nucl Med Mol Imaging, 2010, 37(12): 2249-2255. DOI:10.1007/s00259-010-1575-1.
[17]
Yoshinaga K, Manabe O, Tamaki N. Absolute quantification of myocardial blood flow[J]. J Nucl Cardiol, 2018, 25(2): 635-651. DOI:10.1007/s12350-016-0591-3.
[18]
中华医学会心血管病学分会基础研究学组,中华医学会心血管病学分会介入心脏病学组,中华医学会心血管病学分会女性心脏健康学组,等. 冠状动脉微血管疾病诊断和治疗的中国专家共识[J]. 中国循环杂志,2017, 32(5): 421-430. DOI: 10.3969/j.issn.1000-3614.2017.05.003.
[19]
Noto N, Karasawa K, Kanamaru H, et al. Non-invasive measurement of coronary flow reserve in children with Kawasaki disease[J]. Heart, 2002, 87(6): 559-565. DOI:10.1136/heart.87.6.559.
[20]
Yang N, Su YF, Li WW, et al. Microcirculation function assessed by adenosine triphosphate stress myocardial contrast echocardiography and prognosis in patients with nonobstructive coronary artery disease[J]. Medicine (Baltimore), 2019, 98(27): e15990. DOI:10.1097/MD.0000000000015990.
[21]
Pathan F, Marwick TH. Myocardial perfusion imaging using contrast echocardiography[J]. Prog Cardiovasc Dis, 2015, 57(6): 632-643. DOI:10.1016/j.pcad.2015.03.005.
[22]
Pelletier-Galarneau M, Martineau P, El Fakhri G. Quantification of PET myocardial blood flow[J]. Curr Cardiol Rep, 2019, 21(3): 11. DOI:10.1007/s11886-019-1096-x.
[23]
Hauser M, Bengel F, Kuehn A, et al. Myocardial blood flow and coronary flow reserve in children with " normal" epicardial coronary arteries after the onset of Kawasaki disease assessed by positron emission tomography[J]. Pediatr Cardiol, 2004, 25(2): 108-112. DOI:10.1007/s00246-003-0472-9.
[24]
Muzik O, Paridon SM, Singh TP, et al. Quantification of myocardial blood flow and flow reserve in children with a history of Kawasaki disease and normal coronary arteries using positron emission tomography[J]. J Am Coll Cardiol, 1996, 28(3): 757-762. DOI:10.1016/0735-1097(96)00199-4.
[25]
Khaing T, Raymond C, Chan WX, et al. Quantification of myocardial blood flow and myocardial flow reserve with SPECT imaging technique[J]. J Nucl Cardiol, 2019, 26(1): 318-323. DOI:10.1007/s12350-017-1152-0.
[26]
Otaki Y, Manabe O, Miller R, et al. Quantification of myocardial blood flow by CZT-SPECT with motion correction and comparison with 15O-water PET[J]. J Nucl Cardiol, 2019, 26(5) : 1501-1504. DOI:10.1007/s12350-019-01854-1.
[27]
Abe M, Fukazawa R, Ogawa S, et al. Usefulness of single photon emission computed tomography/computed tomography fusion-hybrid imaging to evaluate coronary artery disorders in patients with a history of Kawasaki disease[J]. J Nippon Med Sch, 2016, 83(2): 71-80. DOI:10.1272/jnms.83.71.
[28]
Bratis K, Chiribiri A, Hussain T, et al. Abnormal myocardial perfusion in Kawasaki disease convalescence[J]. JACC Cardiovasc Imaging, 2015, 8(1): 106-108. DOI:10.1016/j.jcmg.2014.05.017.
[29]
Muthusami P, Luining W, McCrindle B, et al. Myocardial perfusion, fibrosis, and contractility in children with Kawasaki disease[J]. JACC Cardiovasc Imaging, 2018, 11(12): 1922-1924. DOI:10.1016/j.jcmg.2018.06.009.
[30]
Zorach B, Shaw PW, Bourque J, et al. Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease[J]. J Cardiovasc Magn Reson, 2018, 20(1): 14. DOI:10.1186/s12968-018-0435-1.
[31]
Yin L, Xu HY, Zheng SS, et al. 3.0 T magnetic resonance myocardial perfusion imaging for semi-quantitative evaluation of coronary microvascular dysfunction in hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2017, 33(12): 1949-1959. DOI:10.1007/s10554-017-1189-9.
[32]
Papanastasiou G, Williams MC, Dweck MR, et al. Quantitative assessment of myocardial blood flow in coronary artery disease by cardiovascular magnetic resonance: comparison of Fermi and distributed parameter modeling against invasive methods[J]. J Cardiovasc Magn Reson, 2016, 18(1): 57. DOI:10.1186/s12968-016-0270-1.
[33]
Mordini FE, Haddad T, Hsu LY, et al. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment[J]. JACC Cardiovasc Imaging, 2014, 7(1): 14-22. DOI:10.1016/j.jcmg.2013.08.014.
[34]
Engblom H, Xue H, Akil S, et al. Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography[J]. J Cardiovasc Magn Reson, 2017, 19(1): 78. DOI:10.1186/s12968-017-0388-9.
[35]
Coristine AJ, Chaptinel J, Ginami G, et al. Improved respiratory self-navigation for 3D radial acquisitions through the use of a pencil-beam 2D-T2 -prep for free-breathing, whole-heart coronary MRA[J]. Magn Reson Med, 2018, 79(3): 1293-1303. DOI:10.1002/mrm.26764.
[36]
吴建涛,刘峰,魏青政,等. 冠状动脉微循环功能评价方法的应用进展[J]. 微循环学杂志,2018, 28(4): 75-80. DOI:10.3969/j.issn.1005-1740.2018.04.016.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[3] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[4] 刘静, 王燕妮, 王继萍. 儿童毛发移植应用前景及病例讨论[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 368-368.
[5] 郑宝英, 黄小兰, 贾楠, 朱春梅. 儿童难治性肺炎支原体肺炎早期预警指标[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 215-221.
[6] 刘敏, 唐恩溢, 刘喆, 葛苏蒙, 刘梅, 孙国文. 计算机导航技术在口腔颌面部微小异物取出手术中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 375-379.
[7] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[8] 丁荷蓓, 王珣, 陈为国. 七氟烷吸入麻醉与异丙酚静脉麻醉在儿童腹股沟斜疝手术中的应用比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 570-574.
[9] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[10] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[11] 张佳臣, 宋红欣. 儿童青少年等效球镜屈光度变化与屈光不正进展相关性的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 217-222.
[12] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[13] 王晓瑜, 郭群英, 牛雅萌, 赵成松. 公立儿童医院促进儿科就医均等化实践探析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 383-387.
[14] 陈晓胜, 何佳, 刘方, 吴蕊, 杨海涛, 樊晓寒. 直立倾斜试验诱发31 秒心脏停搏的植入心脏起搏器儿童一例并文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 488-494.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要