切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2020, Vol. 16 ›› Issue (02) : 218 -226. doi: 10.3877/cma.j.issn.1673-5250.2020.02.014

所属专题: 文献

论著

子痫前期患者胎盘组织中Pten基因的表达及其临床价值
练蕊1, 朱宝生2,()   
  1. 1. 大理大学临床医学院 671003;云南省第一人民医院医学遗传科,昆明 650032
    2. 云南省第一人民医院医学遗传科,昆明 650032
  • 收稿日期:2019-12-18 修回日期:2020-03-03 出版日期:2020-04-01
  • 通信作者: 朱宝生

Expressions and clinical values of Pten gene in placenta tissues of patients with preeclampsia

Rui Lian1, Baosheng Zhu2,()   

  1. 1. Dali Medical College, Dali 671003, Yunnan Province, China; Genetic Diagnosis Center, First People′s Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
    2. Genetic Diagnosis Center, First People′s Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
  • Received:2019-12-18 Revised:2020-03-03 Published:2020-04-01
  • Corresponding author: Baosheng Zhu
  • About author:
    Corresponding author: Zhu Baosheng, Email:
  • Supported by:
    Major Science and Technology Project of Yunnan Province(2018ZF009)
引用本文:

练蕊, 朱宝生. 子痫前期患者胎盘组织中Pten基因的表达及其临床价值[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(02): 218-226.

Rui Lian, Baosheng Zhu. Expressions and clinical values of Pten gene in placenta tissues of patients with preeclampsia[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(02): 218-226.

目的

探讨Pten基因在子痫前期(PE)孕妇胎盘组织中异常表达的临床意义。

方法

选择2018年8月1日至2019年1月1日在云南省第一人民医院产科采取择期剖宫产术分娩的60例孕妇为研究对象,纳入研究组,根据PE严重程度,将其分为轻度PE亚组(n=30)和重度PE亚组(n=30)。同时,采用随机数字表法,选择同期在本院采取剖宫产术分娩的30例正常孕妇纳入对照组。采用免疫组织化学染色法、实时荧光定量PCR法,检测pten蛋白及Pten mRNA在轻度与重度PE亚组及对照组孕妇胎盘组织中的表达水平。采用Pearson相关分析对研究组孕妇胎盘组织中pten蛋白染色评分和患者收缩压进行相关性分析。本研究遵循的程序符合云南省第一人民医院伦理委员会所制定的伦理学标准,并得到该伦理委员会审批(审查日期:2018年7月11日),并且与所有研究对象均签署临床研究知情同意书。

结果

①轻度与重度PE亚组及对照组孕妇年龄、孕次、怀孕天数、胎儿出生体重、胎盘重量和新生儿身长等比较,差异无统计学意义(P>0.05),而收缩压、舒张压、丙氨酸转氨酶(ALT)、天冬氨酸氨基转移酶(AST)、血小板计数等比较,差异有统计学意义(P<0.05)。②pten蛋白在轻度与重度PE亚组及对照组产妇的胎盘组织中均有表达,主要定位于胎盘绒毛滋养细胞核中,阳性着色呈黄褐色,正常细胞的细胞核呈蓝色。③对照组孕妇胎盘组织中pten蛋白染色评分为(7.2±0.9)分,高于研究组的(4.0±1.3)分,2组比较,差异有统计学意义(t=2.752,P=0.007)。轻度与重度PE亚组及对照组孕妇pten蛋白表达水平分别为(5.7±1.6)分,(2.7±1.1)分和(7.2±0.9)分,轻度与重度PE亚组及对照组孕妇胎盘组织中pten蛋白染色评分总体比较,差异均有统计学意义(F=315.726,P<0.001);轻度与重度PE亚组及对照组间进一步两两比较,差异亦均有统计学意义(轻度PE亚组vs重度PE亚组:LSD-t=2.570,P=0.013;轻度PE亚组vs对照组:LSD-t=2.256,P=0.031;重度PE亚组vs对照组:LSD-t=2.483,P=0.016)。④轻度PE亚组、重度PE亚组和对照组孕妇Pten mRNA相对表达水平分别为(0.5±0.1)、(0.4±0.1)和(1.4±0.3),轻度与重度PE亚组及对照组比较,差异有统计学意义(F=368.748,P<0.001);轻度与重度PE亚组及对照组间进一步两两比较,差异亦均有统计学意义(轻度PE亚组vs重度PE亚组:LSD-t=2.164,P=0.039;轻度PE亚组vs对照组:LSD-t=14.476,P<0.001;重度PE亚组vs对照组:LSD-t=21.825,P<0.001)。⑤研究组孕妇胎盘组织中pten蛋白染色评分与收缩压呈负相关关系(r=-0.356,P=0.005)。

结论

PE孕妇胎盘组织中pten蛋白染色评分,较对照组明显下降,并且重度PE孕妇的下降程度更为明显。Pten基因可能参与了PE的发生,其表达水平可能成为评价PE严重程度的潜在生物标志物。

Objective

To investigate the clinical significance of expressions of Pten gene in placenta tissues of pregnant woman with preeclampsia (PE).

Methods

From August 1, 2018 to January 1, 2019, a total of 60 pregnant women with PE who were hospitalized in the Obstetrics Department of the First People′s Hospital of Yunnan Province and underwent elective cesarean section were recruited into this study (study group). According to the severity of PE, they were divided into mild PE sub-group (n=30) and severe PE sub-group (n=30). Meanwhile, 30 healthy pregnant women who were hospitalized in the same hospital and underwent elective cesarean section were randomly selected into control group. Immunohistochemical staining and real-time fluorescence quantitative PCR were used to detect the expression levels of pten protein and Pten mRNA in the maternal placental tissues of three groups. Pearson correlation analysis was used to analyze the correlation between pten protein levels in the placental tissues of pregnant women and systolic blood pressure of study group. The procedures followed in this study were in accordance with the ethical standards established by the Ethics Committee of the cases collection hospital, and this study was approved by this committee (review date: July 11, 2018). Informed consent was obtained and signed with each subject.

Results

①There were no significant differences in age, gravidity, gestational age, birth weight of newborns, placental weight and length of newborns among three groups (P>0.05), while there were statistically significant differences in systolic blood pressure, diastolic blood pressure, alanine transaminase (ALT), aspartate aminotransferase (AST) and platelet count (P<0.05). ②Pten protein was expressed in the placental tissues of three groups, mainly localized in the nucleus of placental villus trophoblastic cells. The positive staining was yellowish-brown, and the nucleus of normal cells was blue. ③Pten protein staining scores in placenta tissues of pregnant women in control group was (7.2±0.9) scores, which was higher than that of (4.0±1.3) scores in study group, and the difference between two groups was statistically significant (t=2.752, P=0.007). Pten protein staining scores in pregnant women in mild PE sub-group, severe PE sub-group and control group were (5.7±1.6) scores, (2.7±1.1) scores and (7.2±0.9) scores, respectively. The overall comparison of pten protein staining scores in placental tissues of pregnant women among three groups showed statistically significant difference (F=315.726, P<0.001). Further comparison between each two groups showed that all the differences were statistically significant (mild PE sub-group vs severe PE sub-group: LSD-t=2.570, P=0.013; mild PE sub-group vs control group: LSD-t = 2.256, P=0.031; severe PE sub-group vs control group: LSD-t=2.483, P=0.016). ④ The relative expression levels of Pten mRNA in pregnant women with mild PE sub-group, severe PE sub-group and control group were (0.5 ± 0.1), (0.4 ± 0.1) and (1.4 ± 0.3), respectively. Compared with three groups, the differences were statistically significant (F=368.748, P<0.001). Further comparison between each two groups showed that all the differences were statistically significant (mild PE sub-group vs severe PE sub-group: LSD-t=2.164, P=0.039; mild PE sub-group vs control group: LSD-t=14.476, P<0.001; severe PE sub-group vs control group: LSD-t=21.825, P<0.001). ⑤Pten protein staining scores in placental tissues of pregnant women in study group was negatively correlated with systolic blood pressure(r=-0.356, P=0.005).

Conclusions

Pten protein staining scores in placenta tissues of PE patients was significantly lower than that of control group, and the degree of decline in pregnant women with severe PE was more significant. Pten gene may be involved in the occurrence of PE, and its expression level may become a potential biomarker for evaluating severity of preeclampsia.

表1 RevertAid cDNA反转录体系
表2 轻度与重度PE亚组及对照组孕妇一般临床资料比较
图1 轻度与重度PE亚组及对照组孕妇胎盘组织pten蛋白免疫组化检测结果图(图1A:重度PE亚组孕妇胎盘组织;图1B:轻度PE亚组孕妇胎盘组织;图1C:对照组孕妇正常胎盘组织)(免疫组化染色,高倍)
表3 轻度与重度PE亚组及对照组孕妇pten蛋白染色评分和Pten mRNA相对表达水平(±s)
图2 轻度与重度PE亚组及对照组孕妇Pten mRNA相对表达水平柱状图
图3 研究组子痫前期孕妇pten蛋白染色评分与收缩压相关性分析散点图
[1]
中华医学会妇产科学分会妊娠期高血压疾病学组. 妊娠期高血压疾病诊治指南(2015)[J]. 中华妇产科杂志,2015, 50(10):721-728. DOI: 10.3760/cma.j.issn.0529-567x.2015.10.001.
[2]
Asiltas B, Surmen-Gur E, Uncu G. Prediction of first-trimester preeclampsia: relevance of the oxidative stress marker MDA in a combination model with PP-13, PAPP-A and beta-HCG [J]. Pathophysiology, 2018, 25(2): 131-135. DOI: 10.1016/j.pathophys.2018.02.006.
[3]
Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer [J]. Science, 1997, 275(5308): 1943-1947. DOI: 10.1126/science.275.5308.1943.
[4]
Xi Z, Jing L, Le-Ni K, et al. Evaluation of PTEN and CD4FOXP3 T cell expressions as diagnostic and predictive factors in endometrial cancer: a case control study [J]. Medicine (Baltimore), 2019, 98(30): e16345. DOI: 10.1097/MD.0000000000016345.
[5]
Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex [J]. Science, 2005, 307(5712): 1098-1101. DOI: 10.1126/science.1106148.
[6]
Soria JC, Lee HY, Lee JI, et al. Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation [J]. Clin Cancer Res, 2002, 8(5): 1178-1184.
[7]
Xue G, Hemmings BA. PKB/Akt-dependent regulation of cell motility [J]. J Natl Cancer Inst, 2013, 105(6): 393-404. DOI: 10.1093/jnci/djs648.
[8]
Qian Y, Corum L, Meng Q, et al. PI3K induced actin filament remodeling through Akt and p70S6K1: implication of essential role in cell migration [J]. Am J Physiol Cell Physiol, 2004, 286(1): C153-C163. DOI: 10.1152/ajpcell.00142.2003.
[9]
Ni J, Cozzi P, Hao J, et al. Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway [J]. Int J Biochem Cell Biol, 2013, 45(12): 2736-2748. DOI: 10.1016/j.biocel.2013.09.008.
[10]
Li W, Dong Y, Zhang B, et al. PEBP4 silencing inhibits hypoxia-induced epithelial-to-mesenchymal transition in prostate cancer cells [J]. Biomed Pharmacother, 2016, 81: 1-6. DOI: 10.1016/j.biopha.2016.03.030.
[11]
Cao Z, Liu LZ, Dixon DA, et al. Insulin-like growth factor-I induces cyclooxygenase-2 expression via PI3K, MAPK and PKC signaling pathways in human ovarian cancer cells [J]. Cell Signal, 2007, 19(7): 1542-1553. DOI: 10.1016/j.cellsig.2007.01.028.
[12]
Xu L, Brink M. mTOR, cardiomyocytes and inflammation in cardiac hypertrophy [J]. Biochim Biophys Acta, 2016, 1863(7 Pt B): 1894-1903. DOI: 10.1016/j.bbamcr.2016.01.003.
[13]
McKnight NC, Zhenyu Y. Beclin 1, an essential component and master regulator of PI3K-Ⅲ in health and disease [J]. Curr Pathobiol Rep, 2013, 1(4): 231-238. DOI: 10.1007/s40139-013-0028-5.
[14]
Wang RC, Wei Y, An Z, et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation [J]. Science, 2012, 338(6109): 956-959. DOI: 10.1126/science.1225967.
[15]
James JL, Saghian R, Perwick R, et al. Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling [J]. Hum Reprod, 2018, 33(8): 1430-1441. DOI: 10.1093/humrep/dey225.
[16]
Brkić J, Dunk C, O′Brien J, et al. MicroRNA-218-5p promotes endovascular trophoblast differentiation and spiral artery remodeling [J]. Mol Ther, 2018, 26(9): 2189-2205. DOI: 10.1016/j.ymthe.2018.07.009.
[17]
Tessier DR, Yockell-Lelièvre J, Gruslin A. Uterine spiral artery remodeling: the role of uterine natural killer cells and extravillous trophoblasts in normal and high-risk human pregnancies [J]. Am J Reprod Immunol, 2015, 74(1): 1-11. DOI: 10.1111/aji.12345.
[18]
Ding GC, Chen M, Wang YX, et al. MicroRNA-128a-induced apoptosis in HTR-8/SVneo trophoblast cells contributes to pre-eclampsia [J]. Biomed Pharmacother, 2016, 81: 63-70. DOI: 10.1016/j.biopha.2016.03.040.
[19]
Song L, Liu S, Zhang L, et al. MiR-21 modulates radiosensitivity of cervical cancer through inhibiting autophagy via the PTEN/Akt/HIF-1α feedback loop and the Akt-mTOR signaling pathway [J]. Tumour Biol, 2016, 37(9): 12161-12168. DOI: 10.1007/s13277-016-5073-3.
[20]
Allred DC, Clark GM, Elledge R, et al. Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer [J]. J Natl Cancer Inst, 1993, 85(3): 200-206. DOI: 10.1093/jnci/85.3.200.
[21]
赵莉娜,吴锦华,刘国成,等. 早发型重度子痫前期患者胎盘组织中Notch1和PPAR-γ蛋白表达的临床意义 [J/CD]. 中华妇幼临床医学杂志(电子版),2019,15(2):164-170. DOI: 10.3877/cma.j.issn.1673-5250.2019.02.007.
[22]
Calimag-Loyola A, Lerma EV. Renal complications during pregnancy: in the hypertension spectrum [J]. Dis Mon, 2019, 65(2): 25-44. DOI: 10.1016/j.disamonth.2018.03.001.
[23]
Xue P, Fan W, Diao Z, et al. Up-regulation of PTEN via LPS/AP-1/NF-kappaB pathway inhibits trophoblast invasion contributing to preeclampsia[J]. Mol Immunol, 2020, 118:182-190.
[24]
Leavey K, Wilson SL, Bainbridge SA, et al. Epigenetic regulation of placental gene expression in transcriptional subtypes of preeclampsia [J]. Clin Epigenetics, 2018, 10: 28. DOI: 10.1186/s13148-018-0463-6.
[25]
Harris LK. Review: trophoblast-vascular cell interactions in early pregnancy: how to remodel a vessel [J]. Placenta, 2010, 31(Suppl): S93-S98. DOI: 10.1016/j.placenta.2009.12.012.
[26]
Ji L, Brkiź J, Liu M, et al. Placental trophoblast cell differentiation: physiological regulation and pathological relevance to preeclampsia [J]. Mol Aspects Med, 2013, 34(5): 981-1023. DOI: 10.1016/j.mam.2012.12.008.
[27]
Lash GE. Molecular cross-talk at the feto-maternal interface [J]. Cold Spring Harb Perspect Med, 2015, 5(12)DOI: 10.1101/cshperspect.a023010.
[28]
Salomon C, Guanzon D, Scholz-Romero K, et al. Placental exosomes as early biomarker of preeclampsia: potential role of exosomal microRNAs across gestation [J]. J Clin Endocrinol Metab, 2017, 102(9): 3182-3194. DOI: 10.1210/jc.2017-00672.
[29]
BrosensI, Puttemans P, Benagiano G. Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes[J]. Am J Obstet Gynecol, 2019, 211(5): 437-456. DOI: 10.1016/j.ajog.2019.05.044.
[30]
Burton GJ, Jauniaux E. The cytotrophoblastic shell and complications of pregnancy [J]. Placenta, 2017, 60: 134-139. DOI: 10.1016/j.placenta.2017.06.007.
[31]
Milovanov AP. Cytotrophoblastic invasion is the most important mechanism of placentation and pregnancy progression [J]. Arkh Patol, 2019, 81(4): 5-10. DOI: 10.17116/patol2019810415.
[32]
Salomon C, Yee SW, Mitchell MD, et al. The possible role of extravillous trophoblast-derived exosomes on the uterine spiral arterial remodeling under both normal and pathological conditions [J]. Biomed Res Int, 2014, 2014: 693157. DOI: 10.1155/2014/693157.
[33]
Liang H, Zhang Q, Lu J, et al. MSX2 induces trophoblast invasion in human placenta [J]. PLoS One, 2016, 11(4): e0153656. DOI: 10.1371/journal.pone.0153656.
[34]
Roberts DJ, Post MD. The placenta in pre-eclampsia and intrauterine growth restriction [J]. J Clin Pathol, 2008, 61(12): 1254-1260. DOI: 10.1136/jcp.2008.055236.
[35]
Lala PK, Chakraborty C. Factors regulating trophoblast migration and invasiveness: possible derangements contributing to pre-eclampsia and fetal injury [J]. Placenta, 2003, 24(6): 575-587. DOI: 10.1016/s0143-4004(03)00063-8.
[36]
Song MS, Carracedo A, Salmena L, et al. Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independent manner [J]. Cell, 2011, 144(2): 187-199. DOI: 10.1016/j.cell.2010.12.020.
[37]
Oudit GY, Sun H, Kerfant BG, et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease [J]. J Mol Cell Cardiol, 2004, 37(2): 449-471. DOI: 10.1016/j.yjmcc.2004.05.015.
[38]
Morello F, Perino A, Hirsch E. Phosphoinositide 3-kinase signalling in the vascular system [J]. Cardiovasc Res, 2009, 82(2): 261-271. DOI: 10.1093/cvr/cvn325.
[39]
Roberts JM, Escudero C. The placenta in preeclampsia [J]. Pregnancy Hypertens, 2012, 2(2): 72-83.
[40]
Laguё MN, Detmar J, Paquet M, et al. Decidual PTEN expression is required for trophoblast invasion in the mouse [J]. Am J Physiol Endocrinol Metab, 2010, 299(6): E936- E946. DOI: 10.1152/ajpendo.00255.2010.
[41]
Xiao J, Tao T, Yin Y, et al. miR-144 may regulate the proliferation, migration and invasion of trophoblastic cells through targeting PTEN in preeclampsia [J]. Biomed Pharmacother, 2017, 94: 341-353. DOI: 10.1016/j.biopha.2017.07.130.
[42]
Lou CX, Zhou XT, Tian QC, et al. Low expression of microRNA-21 inhibits trophoblast cell infiltration through targeting PTEN [J]. Eur Rev Med Pharmacol Sci, 2018, 22(19): 6181-6189. DOI: 10.26355/eurrev_201810_16023.
[43]
Chen H, Ye D, Xie X, et al. PTEN promoter methylation and protein expression in normal early placentas and hydatidiform moles [J]. J Soc Gynecol Investig, 2005, 12(3): 214-217. DOI: 10.1016/j.jsgi.2005.01.009.
[1] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[2] 居晓庆, 金蕴洁, 王晓燕. 剖宫产术后瘢痕子宫患者再次妊娠阴道分娩发生子宫破裂的影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 575-581.
[3] 王蓓蓓, 董启秀, 郗红燕, 于庆云, 张丽君, 式光. 早孕期孕妇药物流产失败的影响因素分析与构建相关预测模型及其对药物流产成功的预测价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 588-594.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 周梦玲, 薛志伟, 周淑. 妊娠合并子宫肌瘤的孕期变化及其与不良妊娠结局的关系[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 611-615.
[6] 冉晨曦, 沈如飞, 廖明钰, 廖倩, 周玲, 张玉玲, 隆敏. 垂体瘤孕妇的诊治与围分娩期管理[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 487-491.
[7] 魏宇婷, 罗红. 超声弹性成像评价胎儿生长受限的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 256-260.
[8] 陈樱, 陈艳莉. 高龄孕妇心率变异性原因及围产结局分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 295-301.
[9] 冯丹艳, 曹晓辉, 史玉霞. 血清脂联素与胎盘亮氨酸氨肽酶对妊娠期糖尿病患者妊娠结局的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 302-308.
[10] 匡德凤, 李志国, 华绍芳, 薛凤霞. 高脂诱导孕鼠血清及胎盘组织脂肪酸结合蛋白-4及相关脂蛋白水平变化及其意义[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 338-344.
[11] 刘雪云, 范颖, 姚爱军, 张胜苗, 吕亚妮, 张冰清, 张晓宇, 刘恒. 基于微信小程序的个体化、全程护理干预对孕妇孕期体重及分娩结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 455-460.
[12] 吴晓翔, 杨波, 李景漩, 张凤玲, 郭桂辉, 郑少培. 脐动脉超声检查联合NLR、sFlt-1/PLGF对妊娠高血压综合征患者不良妊娠结局的预测价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 266-271.
[13] 中国医师协会妇产科分会母胎医学专委会, 中华医学会围产医学分会重症学组. 预防性介入治疗在胎盘植入性疾病的应用专家共识(2023)[J]. 中华产科急救电子杂志, 2023, 12(03): 133-140.
[14] 陈颖, 曾万江. 病理组织学诊断在胎盘植入性疾病中的作用和意义[J]. 中华产科急救电子杂志, 2023, 12(03): 143-146.
[15] 赵先兰, 周艳. 胎盘植入性疾病出血血管介入治疗策略[J]. 中华产科急救电子杂志, 2023, 12(03): 147-150.
阅读次数
全文


摘要