切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2019, Vol. 15 ›› Issue (01) : 109 -115. doi: 10.3877/cma.j.issn.1673-5250.2019.01.019

所属专题: 文献

综述

CXC趋化因子配体3与相关疾病的研究进展
王慧1, 周容1,()   
  1. 1. 四川大学华西第二医院妇产科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2018-11-02 修回日期:2019-01-11 出版日期:2019-02-01
  • 通信作者: 周容

Research progress of relationship between CXC chemokine ligand 3 and related diseases

Hui Wang1, Rong Zhou1,()   

  1. 1. Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2018-11-02 Revised:2019-01-11 Published:2019-02-01
  • Corresponding author: Rong Zhou
  • About author:
    Corresponding author: Zhou Rong, Email:
  • Supported by:
    National Natural Science Foundation of China(81571465, 81871175); Key Research and Development Project of Science and Technology Department of Sichuan Province(2017FZ0067)
引用本文:

王慧, 周容. CXC趋化因子配体3与相关疾病的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(01): 109-115.

Hui Wang, Rong Zhou. Research progress of relationship between CXC chemokine ligand 3 and related diseases[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2019, 15(01): 109-115.

CXC趋化因子配体(CXCL)3是由多种细胞分泌的一种低相对分子质量的生物活性蛋白质,主要通过招募和活化多种表达CXC趋化因子受体(CXCR)1、2的细胞,参与细胞迁移、侵袭及血管新生等调控,在妊娠相关疾病、肿瘤、心血管疾病及肺部疾病发生、发展中具有重要作用。阻断CXCL3或CXCR1、2信号传导通路,可抑制细胞迁移、侵袭、血管生成、肿瘤发生及纤维化等病理生理过程,这可能成为多种疾病的潜在防治靶点。笔者拟就CXCL3与妊娠相关疾病、肿瘤、心血管疾病及肺部疾病关系的最新研究进展进行阐述,旨在发现CXCL3在上述疾病发病机制中的具体作用,为临床采取新策略诊断及分子靶向治疗上述疾病提供参考。

CXC chemokine ligand (CXCL)3 is one of low relative molecular mass bioactive proteins, secreted by various kinds of cells. CXCL3 plays a pivotal role in the occurrence and development of pregnancy-associated diseases, tumors, cardiovascular diseases, and lung disorders which may be associated with its participation in the regulation of cell migration, cell invasion, vasculogenesis and so on by recruiting and activating different kinds of cells which express CXC chemokine receptor (CXCR)1/2. Blocking CXCL3 or CXCR1/2 signal transduction pathways could inhibit such pathophysiological processes as cell migration, cell invasion, angiogenesis, tumorigenesis and fibration and may be the potential targets in the prevention and treatment of multiple diseases. Therefore, this paper reviews the latest research progresses of the relationship between CXCL3 and pregnancy-associated diseases, tumors, cardiovascular diseases, and lung disorders, with the aim to reveal the concrete functions of CXCL3 in the pathogenesis of these disorders and to provide a basis for adopting new diagnosis strategies and molecular targeted therapy for these diseases.

[1]
Haskill S, Peace A, Morris J, et al. Identification of three related human GRO genes encoding cytokine functions [J]. Proc Natl Acad Sci USA, 1990, 87(19): 7732-7736.
[2]
Gulati K, Gangele K, Agarwal N, et al. Molecular cloning and biophysical characterization of CXCL3 chemokine [J]. Int J Biol Macromol, 2018, 107(Pt A): 575-584.
[3]
Russo RC, Garcia CC, Teixeira MM, et al. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases [J]. Expert Rev Clin Immunol, 2014, 10(5): 593-619.
[4]
Lyall F. Mechanisms regulating cytotrophoblast invasion in normal pregnancy and pre-eclampsia [J]. Aust N Z J Obstet Gynaecol, 2006, 46(4): 266-273.
[5]
Pearce WJ. Multifunctional angiogenic factors: add GnRH to the list. Focus on " Gonadotropin-releasing hormone-regulated chemokine expression in human placentation" [J]. Am J Physiol Cell Physiol, 2009, 297(1): C4-C5.
[6]
David Dong ZM, Aplin AC, Nicosia RF. Regulation of angiogenesis by macrophages, dendritic cells, and circulating myelomonocytic cells [J]. Curr Pharm Des, 2009, 15(4): 365-379.
[7]
Wallace AE, Fraser R, Gurung S, et al. Increased angiogenic factor secretion by decidual natural killer cells from pregnancies with high uterine artery resistance alters trophoblast function [J]. Hum Reprod, 2014, 29(4): 652-660.
[8]
Woidacki K, Meyer N, Schumacher A, et al. Transfer of regulatory T cells into abortion-prone mice promotes the expansion of uterine mast cells and normalizes early pregnancy angiogenesis [J]. Sci Rep, 2015, 5: 13938.
[9]
Cavanagh PC, Dunk C, Pampillo M, et al. Gonadotropin-releasing hormone-regulated chemokine expression in human placentation [J]. Am J Physiol Cell Physiol, 2009, 297(1): C17-C27.
[10]
Naicker T, Khedun SM, Moodley J, et al. Quantitative analysis of trophoblast invasion in preeclampsia [J]. Acta Obstet Gynecol Scand, 2003, 82(8): 722-729.
[11]
Gui S, Ni S, Jia J, Gong Y, et al. Inconformity of CXCL3 plasma level and placenta expression in preeclampsia and its effect on trophoblast viability and invasion [J]. PLoS One, 2014, 9(12): e114408.
[12]
Alasztics B, Kukor Z, Pánczél Z, et al. The pathophysiology of preeclampsia in view of the two-stage model [J]. Orv Hetil, 2012, 153(30): 1167-1176.
[13]
Wright A, Wright D, Syngelaki A, et al. Two-stage screening for preterm preeclampsia at 11-13 weeks′ gestation [J]. Am J Obstet Gynecol, 2019, 220(2): 197. el-197. ell.
[14]
Hassanian SM, Dinarvand P, Rezaie AR. Adenosine regulates the proinflammatory signaling function of thrombin in endothelial cells [J]. J Cell Physiol, 2014, 229(9): 1292-1300.
[15]
Huang SJ, Schatz F, Masch R, et al. Regulation of chemokine production in response to pro-inflammatory cytokines in first trimester decidual cells [J]. J Reprod Immunol, 2006, 72(1-2): 60-73.
[16]
Chevillard G, Derjuga A, Devost D, et al. Identification of interleukin-1beta regulated genes in uterine smooth muscle cells [J]. Reproduction, 2007, 134(6): 811-22.
[17]
Laudanski P, Lemancewicz A, Kuc P, et al. Chemokines profiling of patients with preterm birth [J]. Mediators Inflamm, 2014, 2014: 185758.
[18]
Simhan HN, Caritis SN, Krohn MA, et al. Decreased cervical proinflammatory cytokines permit subsequent upper genital tract infection during pregnancy [J]. Am J Obstet Gynecol, 2003, 189(2): 560-567.
[19]
Martin LF, Moco NP, de Lima MD, et al. Histologic chorioamnionitis does not modulate the oxidative stress and antioxidant status in pregnancies complicated by spontadelivery [J]. BMC Pregnancy Childbirth, 2017, 17(1): 376.
[20]
Maki Y, Fujisaki M, Sato Y, et al. Candida chorioamnionitis leads to preterm birth and adverse fetal-neonatal outcome [J]. Infect Dis Obstet Gynecol, 2017, 2017: 9060138.
[21]
Preston-Martin S, Pike MC, Ross RK, et al. Increased cell division as a cause of human cancer [J]. Cancer Res, 1990, 50(23): 7415-7421.
[22]
See AL, Chong PK, Lu SY, et al. CXCL3 is a potential target for breast cancer metastasis [J]. Curr Cancer Drug Targets, 2014, 14(3): 294-309.
[23]
Gui SL, Teng LC, Wang SQ, et al. Overexpression of CXCL3 can enhance the oncogenic potential of prostate cancer [J]. Int Urol Nephrol, 2016, 48(5): 701-709.
[24]
Subimerb C, Wongkham C, Khuntikeo N, et al. Transcriptional profiles of peripheral blood leukocytes identify patients with cholangiocarcinoma and predict outcome [J]. Asian Pac J Cancer Prev, 2014, 15(10): 4217-4224.
[25]
Farioli-Vecchioli S, Tanori M, Micheli L, et al. Inhibition of medulloblastoma tumorigenesis by the antiproliferative and pro-differentiative gene PC3 [J]. FASEB J, 2007, 21(9): 2215-2225.
[26]
Farioli-Vecchioli S, Cinà I, Ceccarelli M, et al. Tis21 knock-out enhances the frequency of medulloblastoma in patched1 heterozygous mice by inhibiting the Cxcl3-dependent migration of cerebellar neurons [J]. J Neurosci, 2012, 32(44): 15547-15564.
[27]
Kessler JD, Hasegawa H, Brun SN, et al. N-myc alters the fate of preneoplastic cells in a mouse model of medulloblastoma [J]. Genes Dev, 2009, 23(2): 157-170.
[28]
Ceccarelli M, Micheli L, Tirone F. Suppression of medulloblastoma lesions by forced migration of preneoplastic precursor cells with intracerebellar administration of the chemokine Cxcl3 [J]. Front Pharmacol, 2016, 7: 484.
[29]
Delahanty RJ, Xiang YB, Spurdle A, et al. Polymorphisms in inflammation pathway genes and endometrial cancer risk [J]. Cancer Epidemiol Biomarkers Prev, 2013, 22(2): 216-223.
[30]
Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome [J]. Science, 2006, 313(5795): 1960-1964.
[31]
McLean MH, Murray GI, Stewart KN, et al. The inflammatory microenvironment in colorectal neoplasia [J]. PLoS One, 2011, 6(1): e15366.
[32]
Kogan-Sakin I, Cohen M, Paland N, et al. Prostate stromal cells produce CXCL-1, CXCL-2, CXCL-3 and IL-8 in response to epithelia-secreted IL-1 [J]. Carcinogenesis, 2009, 30(4): 698-705.
[33]
Bièche I, Chavey C, Andrieu C, et al. CXC chemokines located in the 4q21 region are up-regulated in breast cancer [J]. Endocr Relat Cancer, 2007, 14(4): 1039-1052.
[34]
Karagiannis GS, Saraon P, Jarvi KA, et al. Proteomic signatures of angiogenesis in androgen-independent prostate cancer [J]. Prostate, 2014, 74(3): 260-72.
[35]
Lee YS, Won KJ, Park SW, et al. Mesenchymal stem cells regulate the proliferation of T cells via the growth-related oncogene/CXC chemokine receptor, CXCR2 [J]. Cell Immunol, 2012, 279(1): 1-11.
[36]
Jin L, Li ZF, Wang DK, et al. Molecular and functional characterization of tumor-induced factor (TIF): hamster homolog of CXCL3 (GROγ) displays tumor suppressive activity [J]. Cytokine, 2018, 102: 62-75.
[37]
Zebrack JS, Anderson JL. The role of inflammation and infection in the pathogenesis and evolution of coronary artery disease [J]. Curr Cardiol Rep, 2002, 4(4): 278-288.
[38]
Zhang L, Li J, Liang A, et al. Immune-related chemotactic factors were found in acute coronary syndromes by bioinformatics [J]. Mol Biol Rep, 2014, 41(7): 4389-4395.
[39]
Kusuyama J, Komorizono A, Bandow K, et al. CXCL3 positively regulates adipogenic differentiation [J]. J Lipid Res, 2016, 57(10): 1806-1820.
[40]
Muñoz A, Costa M. Nutritionally mediated oxidative stress and inflammation [J]. Oxid Med Cell Longev, 2013, 2013: 610950.
[41]
Martin-Fuentes P, Civeira F, Solanas-Barca M, et al. Overexpression of the CXCL3 gene in response to oxidized low-density lipoprotein is associated with the presence of tendon xanthomas in familial hypercholesterolemia [J]. Biochem Cell Biol, 2009, 87(3): 493-498.
[42]
Leonard DA, Merhige ME, Williams BA, et al. Elevated expression of the interleukin-8 receptors CXCR1 and CXCR2 in peripheral blood cells in obstructive coronary artery disease [J]. Coron Artery Dis, 2011, 22(7): 491-496.
[43]
Athanassopoulos P, Vaessen LM, Balk AH, et al. Altered chemokine receptor profile on circulating leukocytes in human heart failure [J]. Cell Biochem Biophys, 2006, 44(1): 83-101.
[44]
Han X. Constitutively active chemokine CXC receptors [J]. Adv Pharmacol, 2014, 70: 265-301.
[45]
Tarzami ST, Cheng R, Miao W, et al. Chemokine expression in myocardial ischemia: MIP-2 dependent MCP-1 expression protects cardiomyocytes from cell death [J]. J Mol Cell Cardiol, 2002, 34(2): 209-221.
[46]
Tarzami ST, Miao W, Mani K, et al. Opposing effects mediated by the chemokine receptor CXCR2 on myocardial ischemia-reperfusion injury: recruitment of potentially damaging neutrophils and direct myocardial protection [J]. Circulation, 2003, 108(19): 2387-2392.
[47]
Liehn EA, Kanzler I, Konschalla S, et al. Compartmentalized protective and detrimental effects of endogenous macrophage migration-inhibitory factor mediated by CXCR2 in a mouse model of myocardial ischemia/reperfusion [J]. Arterioscler Thromb Vasc Biol, 2013, 33(9): 2180-2186.
[48]
Wang J, Zhou C, Liu L, et al. Clinical effect of cardiac shock wave therapy on patients with ischaemic heart disease: a systematic review and Meta-analysis [J]. Eur J Clin Invest, 2015, 45(12): 1270-1285.
[49]
Wang W, Liu H, Song M, et al. Clinical effect of cardiac shock wave therapy on myocardial ischemia in patients with ischemic heart failure [J]. J Cardiovasc Pharmacol Ther, 2016, 21(4): 381-387.
[50]
Guilherme L, Kalil J. Rheumatic heart disease: molecules involved in valve tissue inflammation leading to the autoimmune process and anti-S. pyogenes vaccine [J]. Front Immunol, 2013, 4: 352.
[51]
Clancy RM, Markham AJ, Jackson T, et al. Cardiac fibroblast transcriptome analyses support a role for interferogenic, profibrotic, and inflammatory genes in anti-SSA/Ro-associated congenital heart block [J]. Am J Physiol Heart Circ Physiol, 2017, 313(3): H631-H640.
[52]
Ramos-Barbón D, Fraga-Iriso R, Brienza NS, et al. T Cells localize with proliferating smooth muscle alpha-actin cell compartments in asthma [J]. Am J Respir Crit Care Med, 2010, 182(3): 317-324.
[53]
Chesné J, Braza F, Mahay G, et al. IL-17 in severe asthma. Where do we stand? [J]. Am J Respir Crit Care Med, 2014, 190(10): 1094-1101.
[54]
Al-Alwan LA, Chang Y, Baglole CJ, et al. Autocrine-regulated airway smooth muscle cell migration is dependent on IL-17-induced growth-related oncogenes [J]. J Allergy Clin Immunol, 2012, 130(4): 977. e6-985. e6.
[55]
Goleva E, Hauk PJ, Hall CF, et al. Corticosteroid-resistant asthma is associated with classical antimicrobial activation of airway macrophages [J]. J Allergy Clin Immunol, 2008, 122(3): 550. e3-559. e3.
[56]
Al-Alwan LA, Chang Y, Mogas A, et al. Differential roles of CXCL2 and CXCL3 and their receptors in regulating normal and asthmatic airway smooth muscle cell migration [J]. J Immunol, 2013, 191(5): 2731-2741.
[57]
Ooi AT, Ram S, Kuo A, et al. Identification of an interleukin 13-induced epigenetic signature in allergic airway inflammation [J]. Am J Transl Res, 2012, 4(2): 219-228.
[58]
da Silva Antunes R, Madge L, Soroosh P, et al. The TNF family molecules LIGHT and lymphotoxin αβ induce a distinct steroid-resistant inflammatory phenotype in human lung epithelial cells [J]. J Immunol, 2015, 195(5): 2429-2441.
[59]
Singhania A, Wallington JC, Smith CG, et al. Multitissue transcriptomics delineates the diversity of airway T cell functions in asthma [J]. Am J Respir Cell Mol Biol, 2018, 58(2): 261-270.
[60]
Manzer R, Wang J, Nishina K, et al. Alveolar epithelial cells secrete chemokines in response to IL-1beta and lipopolysaccharide but not to ozone [J]. Am J Respir Cell Mol Biol, 2006, 34(2): 158-166.
[61]
Li Y, Huang J, Foley NM, et al. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration [J]. Sci Rep, 2016, 6: 31284.
[62]
Stevenson CS, Coote K, Webster R, et al. Characterization of cigarette smoke-induced inflammatory and mucus hypersecretory changes in rat lung and the role of CXCR2 ligands in mediating this effect [J]. Am J Physiol Lung Cell Mol Physiol, 2005, 288(3): L514-L522.
[63]
Wang G, Mohammadtursun N, Sun J, et al. Establishment and evaluation of a rat model of sidestream cigarette smoke-induced chronic obstructive pulmonary disease [J]. Front Physiol, 2018, 9: 58.
[64]
Boppana NB, Devarajan A, Gopal K, et al. Blockade of CXCR2 signalling: a potential therapeutic target for preventing neutrophil-mediated inflammatory diseases [J]. Exp Biol Med (Maywood), 2014, 239(5): 509-518.
[1] 张蓝心, 高天琦, 徐岭植, 李曼. 激素受体阳性/人表皮生长因子受体2阴性晚期乳腺癌的治疗进展[J]. 中华乳腺病杂志(电子版), 2022, 16(06): 365-369.
[2] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[3] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[4] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[5] 杨皓媛, 龚杰, 邹青伟, 阮航. 哮喘孕妇的母婴不良妊娠结局研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 522-529.
[6] 娄丽丽, 刘瀚旻. 儿童哮喘易感基因及表观遗传学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 249-255.
[7] 张晓芳, 王平. 阴道黑色素瘤诊疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 621-626.
[8] 林凌, 李佩, 赵玮. 牛牙样牙发病机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 75-80.
[9] 徐瑜杰, 赵国栋. 晚期胃癌治疗方法的研究进展和挑战[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 451-455.
[10] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[11] 李文捷, 卢弘. 幼年特发性关节炎相关葡萄膜炎的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 40-44.
[12] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[13] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[14] 陈真, 漆洪波. 易栓症与胎儿生长受限[J]. 中华产科急救电子杂志, 2023, 12(01): 18-21.
[15] 王敏, 张妍, 王盈熹, 赵龙, 夏书月. 外泌体在慢性阻塞性肺疾病中的作用[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 45-51.
阅读次数
全文


摘要