切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2019, Vol. 15 ›› Issue (01) : 103 -108. doi: 10.3877/cma.j.issn.1673-5250.2019.01.018

所属专题: 文献

综述

心脏发育及心脏病理性重构过程中YAP/TAZ介导的调控机制研究进展
岳鹏1, 华益民1, 周开宇1, 李一飞1, 吴刚1,()   
  1. 1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2018-09-07 修回日期:2019-01-11 出版日期:2019-02-01
  • 通信作者: 吴刚

YAP/TAZ-mediated regulation mechanism in cardiac development and pathologic remodeling

Peng Yue1, Yimin Hua1, Kaiyu Zhou1, Yifei Li1, Gang Wu1,()   

  1. 1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2018-09-07 Revised:2019-01-11 Published:2019-02-01
  • Corresponding author: Gang Wu
  • About author:
    Corresponding author: Wu Gang, Email:
  • Supported by:
    National Natural Science Foundation of China(81570369, 81571515, 81700360); Program for Changjiang Scholars and Innovative Research Team(IRT0935); Science and Technology Pillar Program of Science and Technology Department of Sichuan Province(2016SZ0056)
引用本文:

岳鹏, 华益民, 周开宇, 李一飞, 吴刚. 心脏发育及心脏病理性重构过程中YAP/TAZ介导的调控机制研究进展[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(01): 103-108.

Peng Yue, Yimin Hua, Kaiyu Zhou, Yifei Li, Gang Wu. YAP/TAZ-mediated regulation mechanism in cardiac development and pathologic remodeling[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2019, 15(01): 103-108.

心脏作为对于力学刺激极度敏感的器官,力学应力刺激在心脏发育及心脏病理性重构的过程中具有重要意义。随着近年研究的不断深入,力学信号的传导及相关调控机制越来越受到关注。其中,YAP/TAZ作为一对新近阐明的转录辅助激活因子,将细胞内、外刺激对于心脏的调控联系在一起。已有研究结果证实,YAP/TAZ及相关的Hippo信号通路参与心肌细胞的发育及发展,并且参与心脏病理性重构及多种病理进程。笔者拟对心脏发育和心脏病理性重构中YAP/TAZ介导的调控机制进行综述。

As an organ that is extremely sensitive to mechanical stimulation, mechanical stress stimulation is of great significance in the process of cardiac development and cardiac pathological remodeling. With the deepening of research in recent years, the mechanical signal transmission and related regulatory mechanisms have attracted more and more attention. YAP/TAZ, as a pair of newly clarified co-transcriptional factors, links the regulation of the heart by intracellular and external stimulation. Previous studies showed that YAP/TAZ and related Hippo signaling pathway are involved in the genesis and proliferation of myocardial cells, as well as in cardiac pathological remodeling and various pathological processes. This article reviews YAP/TAZ-mediated regulatory mechanisms in cardiac development and cardiac pathological remodeling.

[1]
Stanger BZ. Organ size determination and the limits of regulation [J]. Cell Cycle, 2008, 7(3): 318-324.
[2]
Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair [J]. Nat Rev Mol Cell Biol, 2013, 14(8): 529-541.
[3]
Ahuja P, Sdek P, MacLellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration [J]. Physiol Rev, 2007, 87(2): 521-544.
[4]
López-Sánchez C, García-Martínez V. Molecular determinants of cardiac specification [J]. Cardiovasc Res, 2011, 91(2): 185-195.
[5]
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players [J]. Nat Rev Mol Cell Biol, 2013, 14(1): 38-48.
[6]
Sylva M, van den Hoff MJ, Moorman AF. Development of the human heart [J]. Am J Med Genet A, 2014, 164A(6): 1347-1371.
[7]
Vincent SD, Buckingham ME. How to make a heart: the origin and regulation of cardiac progenitor cells [J]. Curr Top Dev Biol, 2010, 90: 1-41.
[8]
Heallen T, Morikawa Y, Leach J, et al. Hippo signaling impedes adult heart regeneration [J]. Development, 2013, 140(23): 4683-4690.
[9]
Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction [J]. Nature, 2011, 474(7350): 179-183.
[10]
Wrighton KH. Mechanotransduction: YAP and TAZ feel the force [J]. Nat Rev Mol Cell Biol, 2011, 12(7): 404.
[11]
Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer [J]. Nat Rev Cancer, 2015, 15(2): 73-79.
[12]
Zhou J. An emerging role for Hippo-YAP signaling in cardiovascular development [J]. J Biomed Res, 2014, 28(4): 251-254.
[13]
Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond [J]. Trends Cell Biol, 2015, 25(9): 499-513.
[14]
Lin Z, Pu WT. Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation [J]. Stem Cell Res, 2014, 13(3 Pt B): 571-581.
[15]
Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ [J]. Nat Rev Mol Cell Biol, 2012, 13(9): 591-600.
[16]
Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis [J]. Cell, 2003, 114(4): 457-467.
[17]
Kango-Singh M, Singh A. Regulation of organ size: insights from the Drosophila Hippo signaling pathway [J]. Dev Dyn, 2009, 238(7): 1627-1637.
[18]
Karpowicz P, Perez J, Perrimon N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration [J]. Development, 2010, 137(24): 4135-4145.
[19]
Keren-Paz A, Emmanuel R, Samuels Y. YAP and the drug resistance highway [J]. Nat Genet, 2015, 47(3): 193-194.
[20]
Tapon N, Harvey KF. The Hippo pathway--from top to bottom and everything in between [J]. Semin Cell Dev Biol, 2012, 23(7): 768-769.
[21]
Udan RS, Kango-Singh M, Nolo R, et al. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway [J]. Nat Cell Biol, 2003, 5(10): 914-920.
[22]
Wu S, Huang J, Dong J, et al. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts [J]. Cell, 2003, 114(4): 445-456.
[23]
Kwon Y, Vinayagam A, Sun X, et al. The Hippo signaling pathway interactome [J]. Science, 2013, 342(6159): 737-740.
[24]
Chan SW, Lim CJ, Huang C, et al. WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ [J]. Oncogene, 2011, 30(5): 600-610.
[25]
Chaulk SG, Lattanzi VJ, Hiemer SE, et al. The Hippo pathway effectors TAZ/YAP regulate dicer expression and microRNA biogenesis through Let-7 [J]. J Biol Chem, 2014, 289(4): 1886-1891.
[26]
Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation [J]. Curr Biol, 2008, 18(5): 311-321.
[27]
Dong J, Feldmann G, Huang J, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals [J]. Cell, 2007, 130(6): 1120-1133.
[28]
Zhao B, Wei X, Li W, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control [J]. Genes Dev, 2007, 21(21): 2747-2761.
[29]
Zhao B, Li L, Tumaneng K, et al. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP) [J]. Genes Dev, 2010, 24(1): 72-85.
[30]
Lei QY, Zhang H, Zhao B, et al. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway [J]. Mol Cell Biol, 2008, 28(7): 2426-2436.
[31]
Min B, Kim MK, Zhang JW, et al. Identification of RUNX3 as a component of the MST/Hpo signaling pathway [J]. J Cell Physiol, 2012, 227(2): 839-849.
[32]
Estarás C, Benner C, Jones KA. SMADs and YAP compete to control elongation of β-catenin:LEF-1-recruited RNAPII during hESC differentiation [J]. Mol Cell, 2015, 58(5): 780-793.
[33]
Narimatsu M, Samavarchi-Tehrani P, Varelas X, et al. Distinct polarity cues direct Taz/Yap and TGFβ receptor localization to differentially control TGFβ-induced Smad signaling [J]. Dev Cell, 2015, 32(5): 652-656.
[34]
Zhang H, Liu CY, Zha ZY, et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition [J]. J Biol Chem, 2009, 284(20): 13355-13362.
[35]
Pan D. The hippo signaling pathway in development and cancer [J]. Dev Cell, 2010, 19(4): 491-505.
[36]
Heallen T, Zhang M, Wang J, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size [J]. Science, 2011, 332(6028): 458-461.
[37]
von Gise A, Lin Z, Schlegelmilch K, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy [J]. Proc Natl Acad Sci U S A, 2012, 109(7): 2394-2399.
[38]
Xin M, Kim Y, Sutherland LB, et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size [J]. Sci Signal, 2011, 4(196): ra70.
[39]
Xin M, Kim Y, Sutherland LB, et al. Hippo pathway effector Yap promotes cardiac regeneration [J]. Proc Natl Acad Sci U S A, 2013, 110(34): 13839-13844.
[40]
Park HW, Kim YC, Yu B, et al. Alternative Wnt signaling activates YAP/TAZ [J]. Cell, 2015, 162(4): 780-794.
[41]
Varelas X, Miller BW, Sopko R, et al. The Hippo pathway regulates Wnt/beta-catenin signaling [J]. Dev Cell, 2010, 18(4): 579-591.
[42]
Tsuneki M, Madri JA. CD44 Influences fibroblast behaviors via modulation of cell-cell and cell-matrix interactions, affecting survivin and Hippo pathways [J]. J Cell Physiol, 2016, 231(3): 731-743.
[43]
Zhang Y, Xia H, Ge X, et al. CD44 acts through RhoA to regulate YAP signaling [J]. Cell Signal, 2014, 26(11): 2504-2513.
[44]
Zhao B, Ye X, Yu J, et al. TEAD mediates YAP-dependent gene induction and growth control [J]. Genes Dev, 2008, 22(14): 1962-1971.
[45]
Chen Z, Friedrich GA, Soriano P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice [J]. Genes Dev, 1994, 8(19): 2293-2301.
[46]
Sawada A, Kiyonari H, Ukita K, et al. Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival [J]. Mol Cell Biol, 2008, 28(10): 3177-3189.
[47]
Imajo M, Miyatake K, Iimura A, et al. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling [J]. EMBO J, 2012, 31(5): 1109-1122.
[48]
Murakami M, Nakagawa M, Olson EN, et al. A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome [J]. Proc Natl Acad Sci U S A, 2005, 102(50): 18034-18039.
[49]
Shao D, Zhai P, Del Re DP, et al. A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response [J]. Nat Commun, 2014, 5: 3315.
[50]
Varelas X, Sakuma R, Samavarchi-Tehrani P, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal [J]. Nat Cell Biol, 2008, 10(7): 837-848.
[51]
Del Re DP, Yang Y, Nakano N, et al. Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury [J]. J Biol Chem, 2013, 288(6): 3977-3988.
[52]
Oh H, Slattery M, Ma L, et al. Genome-wide association of Yorkie with chromatin and chromatin-remodeling complexes [J]. Cell Rep, 2013, 3(2): 309-318.
[53]
Skibinski A, Breindel JL, Prat A, et al. The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment [J]. Cell Rep, 2014, 6(6): 1059-1072.
[54]
Hang CT, Yang J, Han P, et al. Chromatin regulation by Brg1 underlies heart muscle development and disease [J]. Nature, 2010, 466(7302): 62-67.
[55]
Taegtmeyer H, Sen S, Vela D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart [J]. Ann N Y Acad Sci, 2010, 1188: 191-198.
[56]
Yamamoto S, Yang G, Zablocki D, et al. Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy [J]. J Clin Invest, 2003, 111(10): 1463-1474.
[57]
Del Re DP, Matsuda T, Zhai P, et al. Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice [J]. J Clin Invest, 2010, 120(10): 3555-3567.
[58]
Del Re DP, Matsuda T, Zhai P, et al. Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL [J]. Mol Cell, 2014, 54(4): 639-650.
[59]
Matsui Y, Nakano N, Shao D, et al. Lats2 is a negative regulator of myocyte size in the heart [J]. Circ Res, 2008, 103(11): 1309-1318.
[60]
Wang Y, Hu G, Liu F, et al. Deletion of yes-associated protein (YAP) specifically in cardiac and vascular smooth muscle cells reveals a crucial role for YAP in mouse cardiovascular development [J]. Circ Res, 2014, 114(6): 957-965.
[61]
Aragona M, Panciera T, Manfrin A, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors [J]. Cell, 2013, 154(5): 1047-1059.
[62]
Zhao B, Li L, Wang L, et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis [J]. Genes Dev, 2012, 26(1): 54-68.
[63]
Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification [J]. Cell, 2006, 126(4): 677-689.
[64]
Meng Z, Qiu Y, Lin KC, et al. RAP2 mediates mechanoresponses of the Hippo pathway [J]. Nature, 2018, 560(7720): 655-660.
[65]
Mosqueira D, Pagliari S, Uto K, et al. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure [J]. ACS Nano, 2014, 8(3): 2033-2047.
[66]
Fernández BG, Gaspar P, Brás-Pereira C, et al. Actin-Capping protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila[J]. Development, 2011, 138(11): 2337-2346.
[1] 刘丹妮, 敖梦, 冉海涛, 李世玉, 秦芳. 三维超声心动图及二维斑点追踪成像对持续性心房颤动复律后双心房逆向重构的评估[J]. 中华医学超声杂志(电子版), 2023, 20(08): 827-835.
[2] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[3] 吴赤球, 韦曙东, 张辉, 严许清, 梅朵卓嘎, 余丹. 驻不同海拔高度高原人员习服后心脏结构和功能变化的超声心动图评估[J]. 中华医学超声杂志(电子版), 2023, 20(06): 588-593.
[4] 谭芳, 杨娇娇, 沈玉琴, 李炎菲海, 王海蕊, 范思涵, 纪学芹. 胎儿心脏定量分析技术对正常胎儿心脏形态及收缩功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(06): 598-604.
[5] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[6] 吴群, 张鑫, 李培, 王芳韵, 郑淋, 卫海燕, 马宁. 孤立型主动脉缩窄的超声心动图诊断及术后随访研究[J]. 中华医学超声杂志(电子版), 2023, 20(06): 642-646.
[7] 王月丽, 宋砾, 牛宝荣, 陈炎, 张楠, 何怡华. 心脏血管肉瘤的临床及超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(04): 398-403.
[8] 何俊, 马小静, 夏娟, 何亚峰, 谢姝瑞. 原发性非黏液性心脏肿瘤的超声心动图表现及临床特点分析[J]. 中华医学超声杂志(电子版), 2023, 20(04): 411-416.
[9] 李博, 孔德璇, 彭芳华, 吴文瑛. 超声在胎儿肺静脉异位引流诊断中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(04): 437-441.
[10] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[11] 王玲燕, 邹磊, 洪亮, 宋三兵, 付润, 熊胜男, 宋晓春. 心脏外科术后患者并发低三碘甲状腺原氨酸综合征的影响因素分析[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 399-402.
[12] 吴建永. 单中心2 000例心脏死亡器官捐献肾移植发展与创新[J]. 中华移植杂志(电子版), 2023, 17(04): 0-.
[13] 张妍, 吕强, 韩笑, 王旭, 刘冉, 张利, 陈香美. 挤压综合征大鼠核心脏器肾心肺损伤特点研究[J]. 中华肾病研究电子杂志, 2023, 12(05): 248-253.
[14] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[15] 张生怀. 急性心肌梗死致心源性猝死救治分析一例[J]. 中华临床医师杂志(电子版), 2023, 17(08): 924-926.
阅读次数
全文


摘要