[1] |
Stanger BZ. Organ size determination and the limits of regulation [J]. Cell Cycle, 2008, 7(3): 318-324.
|
[2] |
Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair [J]. Nat Rev Mol Cell Biol, 2013, 14(8): 529-541.
|
[3] |
Ahuja P, Sdek P, MacLellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration [J]. Physiol Rev, 2007, 87(2): 521-544.
|
[4] |
López-Sánchez C, García-Martínez V. Molecular determinants of cardiac specification [J]. Cardiovasc Res, 2011, 91(2): 185-195.
|
[5] |
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players [J]. Nat Rev Mol Cell Biol, 2013, 14(1): 38-48.
|
[6] |
Sylva M, van den Hoff MJ, Moorman AF. Development of the human heart [J]. Am J Med Genet A, 2014, 164A(6): 1347-1371.
|
[7] |
Vincent SD, Buckingham ME. How to make a heart: the origin and regulation of cardiac progenitor cells [J]. Curr Top Dev Biol, 2010, 90: 1-41.
|
[8] |
Heallen T, Morikawa Y, Leach J, et al. Hippo signaling impedes adult heart regeneration [J]. Development, 2013, 140(23): 4683-4690.
|
[9] |
Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction [J]. Nature, 2011, 474(7350): 179-183.
|
[10] |
Wrighton KH. Mechanotransduction: YAP and TAZ feel the force [J]. Nat Rev Mol Cell Biol, 2011, 12(7): 404.
|
[11] |
Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer [J]. Nat Rev Cancer, 2015, 15(2): 73-79.
|
[12] |
Zhou J. An emerging role for Hippo-YAP signaling in cardiovascular development [J]. J Biomed Res, 2014, 28(4): 251-254.
|
[13] |
Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond [J]. Trends Cell Biol, 2015, 25(9): 499-513.
|
[14] |
Lin Z, Pu WT. Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation [J]. Stem Cell Res, 2014, 13(3 Pt B): 571-581.
|
[15] |
Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ [J]. Nat Rev Mol Cell Biol, 2012, 13(9): 591-600.
|
[16] |
Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis [J]. Cell, 2003, 114(4): 457-467.
|
[17] |
Kango-Singh M, Singh A. Regulation of organ size: insights from the Drosophila Hippo signaling pathway [J]. Dev Dyn, 2009, 238(7): 1627-1637.
|
[18] |
Karpowicz P, Perez J, Perrimon N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration [J]. Development, 2010, 137(24): 4135-4145.
|
[19] |
Keren-Paz A, Emmanuel R, Samuels Y. YAP and the drug resistance highway [J]. Nat Genet, 2015, 47(3): 193-194.
|
[20] |
Tapon N, Harvey KF. The Hippo pathway--from top to bottom and everything in between [J]. Semin Cell Dev Biol, 2012, 23(7): 768-769.
|
[21] |
Udan RS, Kango-Singh M, Nolo R, et al. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway [J]. Nat Cell Biol, 2003, 5(10): 914-920.
|
[22] |
Wu S, Huang J, Dong J, et al. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts [J]. Cell, 2003, 114(4): 445-456.
|
[23] |
Kwon Y, Vinayagam A, Sun X, et al. The Hippo signaling pathway interactome [J]. Science, 2013, 342(6159): 737-740.
|
[24] |
Chan SW, Lim CJ, Huang C, et al. WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ [J]. Oncogene, 2011, 30(5): 600-610.
|
[25] |
Chaulk SG, Lattanzi VJ, Hiemer SE, et al. The Hippo pathway effectors TAZ/YAP regulate dicer expression and microRNA biogenesis through Let-7 [J]. J Biol Chem, 2014, 289(4): 1886-1891.
|
[26] |
Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation [J]. Curr Biol, 2008, 18(5): 311-321.
|
[27] |
Dong J, Feldmann G, Huang J, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals [J]. Cell, 2007, 130(6): 1120-1133.
|
[28] |
Zhao B, Wei X, Li W, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control [J]. Genes Dev, 2007, 21(21): 2747-2761.
|
[29] |
Zhao B, Li L, Tumaneng K, et al. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP) [J]. Genes Dev, 2010, 24(1): 72-85.
|
[30] |
Lei QY, Zhang H, Zhao B, et al. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway [J]. Mol Cell Biol, 2008, 28(7): 2426-2436.
|
[31] |
Min B, Kim MK, Zhang JW, et al. Identification of RUNX3 as a component of the MST/Hpo signaling pathway [J]. J Cell Physiol, 2012, 227(2): 839-849.
|
[32] |
Estarás C, Benner C, Jones KA. SMADs and YAP compete to control elongation of β-catenin:LEF-1-recruited RNAPII during hESC differentiation [J]. Mol Cell, 2015, 58(5): 780-793.
|
[33] |
Narimatsu M, Samavarchi-Tehrani P, Varelas X, et al. Distinct polarity cues direct Taz/Yap and TGFβ receptor localization to differentially control TGFβ-induced Smad signaling [J]. Dev Cell, 2015, 32(5): 652-656.
|
[34] |
Zhang H, Liu CY, Zha ZY, et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition [J]. J Biol Chem, 2009, 284(20): 13355-13362.
|
[35] |
Pan D. The hippo signaling pathway in development and cancer [J]. Dev Cell, 2010, 19(4): 491-505.
|
[36] |
Heallen T, Zhang M, Wang J, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size [J]. Science, 2011, 332(6028): 458-461.
|
[37] |
von Gise A, Lin Z, Schlegelmilch K, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy [J]. Proc Natl Acad Sci U S A, 2012, 109(7): 2394-2399.
|
[38] |
Xin M, Kim Y, Sutherland LB, et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size [J]. Sci Signal, 2011, 4(196): ra70.
|
[39] |
Xin M, Kim Y, Sutherland LB, et al. Hippo pathway effector Yap promotes cardiac regeneration [J]. Proc Natl Acad Sci U S A, 2013, 110(34): 13839-13844.
|
[40] |
Park HW, Kim YC, Yu B, et al. Alternative Wnt signaling activates YAP/TAZ [J]. Cell, 2015, 162(4): 780-794.
|
[41] |
Varelas X, Miller BW, Sopko R, et al. The Hippo pathway regulates Wnt/beta-catenin signaling [J]. Dev Cell, 2010, 18(4): 579-591.
|
[42] |
Tsuneki M, Madri JA. CD44 Influences fibroblast behaviors via modulation of cell-cell and cell-matrix interactions, affecting survivin and Hippo pathways [J]. J Cell Physiol, 2016, 231(3): 731-743.
|
[43] |
Zhang Y, Xia H, Ge X, et al. CD44 acts through RhoA to regulate YAP signaling [J]. Cell Signal, 2014, 26(11): 2504-2513.
|
[44] |
Zhao B, Ye X, Yu J, et al. TEAD mediates YAP-dependent gene induction and growth control [J]. Genes Dev, 2008, 22(14): 1962-1971.
|
[45] |
Chen Z, Friedrich GA, Soriano P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice [J]. Genes Dev, 1994, 8(19): 2293-2301.
|
[46] |
Sawada A, Kiyonari H, Ukita K, et al. Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival [J]. Mol Cell Biol, 2008, 28(10): 3177-3189.
|
[47] |
Imajo M, Miyatake K, Iimura A, et al. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling [J]. EMBO J, 2012, 31(5): 1109-1122.
|
[48] |
Murakami M, Nakagawa M, Olson EN, et al. A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome [J]. Proc Natl Acad Sci U S A, 2005, 102(50): 18034-18039.
|
[49] |
Shao D, Zhai P, Del Re DP, et al. A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response [J]. Nat Commun, 2014, 5: 3315.
|
[50] |
Varelas X, Sakuma R, Samavarchi-Tehrani P, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal [J]. Nat Cell Biol, 2008, 10(7): 837-848.
|
[51] |
Del Re DP, Yang Y, Nakano N, et al. Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury [J]. J Biol Chem, 2013, 288(6): 3977-3988.
|
[52] |
Oh H, Slattery M, Ma L, et al. Genome-wide association of Yorkie with chromatin and chromatin-remodeling complexes [J]. Cell Rep, 2013, 3(2): 309-318.
|
[53] |
Skibinski A, Breindel JL, Prat A, et al. The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment [J]. Cell Rep, 2014, 6(6): 1059-1072.
|
[54] |
Hang CT, Yang J, Han P, et al. Chromatin regulation by Brg1 underlies heart muscle development and disease [J]. Nature, 2010, 466(7302): 62-67.
|
[55] |
Taegtmeyer H, Sen S, Vela D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart [J]. Ann N Y Acad Sci, 2010, 1188: 191-198.
|
[56] |
Yamamoto S, Yang G, Zablocki D, et al. Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy [J]. J Clin Invest, 2003, 111(10): 1463-1474.
|
[57] |
Del Re DP, Matsuda T, Zhai P, et al. Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice [J]. J Clin Invest, 2010, 120(10): 3555-3567.
|
[58] |
Del Re DP, Matsuda T, Zhai P, et al. Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL [J]. Mol Cell, 2014, 54(4): 639-650.
|
[59] |
Matsui Y, Nakano N, Shao D, et al. Lats2 is a negative regulator of myocyte size in the heart [J]. Circ Res, 2008, 103(11): 1309-1318.
|
[60] |
Wang Y, Hu G, Liu F, et al. Deletion of yes-associated protein (YAP) specifically in cardiac and vascular smooth muscle cells reveals a crucial role for YAP in mouse cardiovascular development [J]. Circ Res, 2014, 114(6): 957-965.
|
[61] |
Aragona M, Panciera T, Manfrin A, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors [J]. Cell, 2013, 154(5): 1047-1059.
|
[62] |
Zhao B, Li L, Wang L, et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis [J]. Genes Dev, 2012, 26(1): 54-68.
|
[63] |
Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification [J]. Cell, 2006, 126(4): 677-689.
|
[64] |
Meng Z, Qiu Y, Lin KC, et al. RAP2 mediates mechanoresponses of the Hippo pathway [J]. Nature, 2018, 560(7720): 655-660.
|
[65] |
Mosqueira D, Pagliari S, Uto K, et al. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure [J]. ACS Nano, 2014, 8(3): 2033-2047.
|
[66] |
Fernández BG, Gaspar P, Brás-Pereira C, et al. Actin-Capping protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila[J]. Development, 2011, 138(11): 2337-2346.
|