切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2019, Vol. 15 ›› Issue (01) : 116 -120. doi: 10.3877/cma.j.issn.1673-5250.2019.01.020

所属专题: 文献

综述

母体肠道菌群失调及其子宫内转移对母胎影响的研究进展
吕莉娟1, 李慧1, 何薇1, 段红丽1, 尹爱华1,()   
  1. 1. 广东省妇幼保健院产科,广州 511400
  • 收稿日期:2018-09-08 修回日期:2019-01-03 出版日期:2019-02-01
  • 通信作者: 尹爱华

Research progress on effects of maternal intestinal flora disturbance and its intrauterine translocation on mother and fetus

Lijuan Lyu1, Hui Li1, Wei He1, Hongli Duan1, Aihua Yin1,()   

  1. 1. Department of Obstetrics, Guangdong Women′s and Children′s Hospital, Guangzhou 511400, Guangdong Province, China
  • Received:2018-09-08 Revised:2019-01-03 Published:2019-02-01
  • Corresponding author: Aihua Yin
  • About author:
    Corresponding author: Yin Aihua, Email:
  • Supported by:
    Key Project for Prevention and Control of Reproductive Health and Major Birth Defects of National Key Research and Development Program of China in 2016(2016YFC1000703)
引用本文:

吕莉娟, 李慧, 何薇, 段红丽, 尹爱华. 母体肠道菌群失调及其子宫内转移对母胎影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(01): 116-120.

Lijuan Lyu, Hui Li, Wei He, Hongli Duan, Aihua Yin. Research progress on effects of maternal intestinal flora disturbance and its intrauterine translocation on mother and fetus[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2019, 15(01): 116-120.

子宫内有细菌存在,并且可能对胎儿产生影响。母胎间菌群转移的具体作用机制迄今尚未阐明。胎儿肠道菌群的主要来源除了母体血液、胎盘和羊水外,母体肠道亦可能是胎儿肠道菌群的主要来源之一。母体肠道菌群通过血液等途径转移至子宫内,再经过胎盘血液循环和羊水等途径转移至胎儿肠道和免疫系统。母体孕期肠道菌群的结构与数量,可对孕妇及其子代肥胖、神经系统发育异常和血压调节产生影响。随着基因测序技术的发展,有助于更深入探讨母体肠道菌群失调及其子宫内转移与母胎疾病之间的关系,为胎源性疾病的预防和干预提供理论依据。笔者拟就母体肠道菌群失调及其子宫内转移对母胎影响的研究进展进行综述。

Recent studies have shown that bacteria exist in the uterus and may affect the fetus. So far, the specific mechanism of flora translocation between mother and fetus has not been clarified. Besides maternal blood, placenta and amniotic fluid, maternal intestinal tract may also be one of the main sources of fetal intestinal flora. The maternal intestinal flora is translocated to the uterus through blood and other means, and then translocated to the fetal gut and immune system via the placental blood circulation and amniotic fluid. The abnormal composition and quantity of intestinal flora during pregnancy can lead to obesity, abnormal development of nerve system and abnormal blood pressure regulation of the mother and fetus after birth. With the development of gene sequencing technology, the relationship between maternal intestinal flora disturbance and its intrauterine translocation and maternal-fetal diseases can be further explored, thus providing theoretical basis for prevention and intervention of fetal diseases. The author intends to review the research progress on the effects of maternal intestinal flora disturbance and its intrauterine translocation on the mother and fetus.

[1]
Romano-Keeler J, Weitkamp JH. Maternal influences on fetal microbial colonization and immune development [J]. Pediatr Res, 2015, 77(1-2): 189-195.
[2]
Charbonneau MR, Blanton LV, DiGiulio DB, et al. A microbial perspective of human developmental biology [J]. Nature, 2016, 535(7610): 48-55.
[3]
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns [J]. Proc Natl Acad Sci U S A, 2010, 107(26): 11971-11975.
[4]
Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation [J]. Proc Natl Acad Sci U S A, 2013, 110(11): 4410-4415.
[5]
Jiménez E, Fernández L, Marín ML, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section [J]. Curr Microbiol, 2005, 51(4): 270-274.
[6]
Rautava S, Collado MC, Salminen S, et al. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial [J]. Neonatology, 2012, 102(3): 178-184.
[7]
Jiménez E, Marín ML, Martín R, et al. Is meconium from healthy newborns actually sterile? [J]. Res Microbiol, 2008, 159(3): 187-193.
[8]
Madianos PN, Bobetsis YA, Offenbacher S. Adverse pregnancy outcomes (APOs) and periodontal disease: pathogenic mechanisms [J]. J Periodontol, 2013, 84(4 Suppl): S170-S180.
[9]
Thum C, Cookson AL, Otter DE, et al. Can nutritional modulation of maternal intestinal microbiota influence the development of the infant gastrointestinal tract? [J]. J Nutr, 2012, 142(11): 1921-1928.
[10]
Jeon SJ, Cunha F, Vieira-Neto A, et al. Blood as a route of transmission of uterine pathogens from the gut to the uterus in cows [J]. Microbiome, 2017, 5(1): 109.
[11]
Perez PF, Doré J, Leclerc M, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? [J]. Pediatrics, 2007, 119(3): e724-e732.
[12]
Abrahamsson TR, Wu RY, Jenmalm MC. Gut microbiota and allergy: the importance of the pregnancy period [J]. Pediatr Res, 2015, 77(1-2): 214-219.
[13]
Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome [J]. Nature, 2016, 534(7606): 213-217.
[14]
Ma J, Prince AL, Bader D, et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model [J]. Nat Commun, 2014, 5: 3889.
[15]
Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites [J]. Cell, 2016, 165(6): 1332-1345.
[16]
Borre YE, O′Keeffe GW, Clarke G, et al. Microbiota and neurodevelopmental windows: implications for brain disorders [J]. Trends Mol Med, 2014, 20(9): 509-518.
[17]
Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders [J]. Cell, 2013, 155(7): 1451-1463.
[18]
Choi GB, Yim YS, Wong H, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring [J]. Science, 2016, 351(6276): 933-939.
[19]
Kim S, Kim H, Yim YS, et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring [J]. Nature, 2017, 549(7673): 528-532.
[20]
Shin Yim Y, Park A, Berrios J, et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation [J]. Nature, 2017, 549(7673): 482-487.
[21]
Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria [J]. Cell, 2009, 139(3): 485-498.
[22]
Buffington SA, Di Prisco GV, Auchtung TA, et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring [J]. Cell, 2016, 165(7): 1762-1775.
[23]
Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension [J]. Microbiome, 2017, 5(1): 14.
[24]
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance [J]. Diabetes, 2007, 56(7): 1761-1772.
[25]
Gomez-Arango LF, Barrett HL, McIntyre HD, et al. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy [J]. Hypertension, 2016, 68(4): 974-981.
[26]
Liu J, Yang H, Yin Z, et al. Remodeling of the gut microbiota and structural shifts in preeclampsia patients in South China [J]. Eur J Clin Microbiol Infect Dis, 2017, 36(4): 713-719.
[27]
Brantsaeter AL, Myhre R, Haugen M, et al. Intake of probiotic food and risk of preeclampsia in primiparous women: the Norwegian Mother and Child Cohort Study [J]. Am J Epidemiol, 2011, 174(7): 807-815.
[28]
Myhre R, Brantsæter AL, Myking S, et al. Intake of probiotic food and risk of spontaneous preterm delivery [J]. Am J Clin Nutr, 2011, 93(1): 151-157.
[29]
Cho NH, Silverman BL, Rizzo TA, et al. Correlations between the intrauterine metabolic environment and blood pressure in adolescent offspring of diabetic mothers [J]. J Pediatr, 2000, 136(5): 587-592.
[30]
Vatten LJ, Romundstad PR, Holmen TL, et al. Intrauterine exposure to preeclampsia and adolescent blood pressure, body size, and age at menarche in female offspring [J]. Obstet Gynecol, 2003, 101(3): 529-533.
[31]
Gohir W, Ratcliffe EM, Sloboda DM, et al. Of the bugs that shape us: maternal obesity, the gut microbiome, and long-term disease risk [J]. Pediatr Res, 2015, 77(1-2): 196-204.
[32]
Santisteban MM, Qi Y, Zubcevic J, et al. Hypertension-linked pathophysiological alterations in the gut [J]. Circ Res, 2017, 120(2): 312-323.
[33]
Mowat AM, Agace WW. Regional specialization within the intestinal immune system [J]. Nat Rev Immunol, 2014, 14(10): 667-685.
[34]
Brugman S, Perdijk O, van Neerven RJ, et al. Mucosal immune development in early life: setting the stage [J]. Arch Immunol Ther Exp (Warsz), 2015, 63(4): 251-268.
[35]
Milani C, Duranti S, Bottacini F, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota [J]. Microbiol Mol Biol Rev, 2017, 81(4): e00036-17.
[36]
Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, et al. A critical assessment of the " sterile womb" and " in utero colonization" hypotheses: implications for research on the pioneer infant microbiome [J]. Microbiome, 2017, 5(1): 48.
[37]
Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants′ and children′s health? [J]. J Pediatr Gastroenterol Nutr, 2015, 60(3): 294-307.
[38]
Hill DR, Huang S, Nagy MS, et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium [J]. Elife, 2017, 6. pii: e29132.
[39]
Duan J, Chung H, Troy E, et al. Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells [J]. Cell Host Microbe, 2010, 7(2): 140-150.
[40]
Abecia L, Jiménez E, Martínez-Fernandez G, et al. Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats [J]. PLoS One, 2017, 12(8): e0182235.
[41]
Laforest-Lapointe I, Arrieta MC. Patterns of early-life gut microbial colonization during human immune development: an ecological perspective [J]. Front Immunol, 2017, 8: 788.
[42]
Pickard JM, Zeng MY, Caruso R, et al. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease [J]. Immunol Rev, 2017, 279(1): 70-89.
[43]
Choi YS, Song IG. Fetal and preterm infant microbiomes: a new perspective of necrotizing enterocolitis [J]. Korean J Pediatr, 2017, 60(10): 307-311.
[44]
Gomez-Arango LF, Barrett HL, McIntyre HD, et al. Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women [J]. Sci Rep, 2017, 7(1): 2860.
[45]
Qian LJ, Kang SM, Xie JL, et al. Early-life gut microbial colonization shapes Th1/Th2 balance in asthma model in BALB/c mice [J]. BMC Microbiol, 2017, 17(1): 135.
[1] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[2] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[3] 赵红娟, 赵博文, 潘美, 纪园园, 彭晓慧, 陈冉. 应用多普勒超声定量分析正常中晚孕期胎儿左心室收缩舒张时间指数[J]. 中华医学超声杂志(电子版), 2023, 20(09): 951-958.
[4] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[5] 旺久, 陈军, 朱霞, 米玛央金, 赵胜, 陈欣林, 李建华, 王双. 山南市妇幼保健院开展胎儿系统超声筛查的效果分析[J]. 中华医学超声杂志(电子版), 2023, 20(07): 728-733.
[6] 徐鹏, 李军, 高巍伦, 王峥, 庞珅, 李春妮, 朱霆. 快速旋转扫查法在胎儿超声心动图检查中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 761-766.
[7] 谭芳, 杨娇娇, 沈玉琴, 李炎菲海, 王海蕊, 范思涵, 纪学芹. 胎儿心脏定量分析技术对正常胎儿心脏形态及收缩功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(06): 598-604.
[8] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[9] 黄佳, 石华, 张玉国, 胡佳琪, 陈茜. 胎儿左头臂静脉正常与异常超声图像特征及其临床意义[J]. 中华医学超声杂志(电子版), 2023, 20(06): 610-617.
[10] 袁泽, 庄丽. 超声检测胎儿脐动脉和大脑中动脉血流对胎儿宫内窘迫的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 618-621.
[11] 刘镭, 杨昕, 许晓华, 林胜谋, 熊初琴, 农丽录, 董振宇, 李胜利. 中孕期胎儿鼻前皮肤厚度及鼻骨长度筛查胎儿染色体病的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(05): 506-510.
[12] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[13] 居晓庆, 金蕴洁, 王晓燕. 剖宫产术后瘢痕子宫患者再次妊娠阴道分娩发生子宫破裂的影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 575-581.
[14] 王蓓蓓, 董启秀, 郗红燕, 于庆云, 张丽君, 式光. 早孕期孕妇药物流产失败的影响因素分析与构建相关预测模型及其对药物流产成功的预测价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 588-594.
[15] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
阅读次数
全文


摘要