切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2018, Vol. 14 ›› Issue (06) : 668 -674. doi: 10.3877/cma.j.issn.1673-5250.2018.06.008

所属专题: 文献

论著

血清缺氧诱导因子-1α、血管内皮生长因子、内皮素-1水平变化与新生儿缺氧性肺动脉高压的相关性研究
白波1, 陈波2,(), 李广洪1, 罗惠玲1, 黄暖潮1, 黄学良1   
  1. 1. 510800 广州,南方医科大学附属花都医院新生儿科
    2. 510800 广州,南方医科大学附属花都医院院感科
  • 收稿日期:2018-07-29 修回日期:2018-11-08 出版日期:2018-12-01
  • 通信作者: 陈波

Study on the correlation of serum hypoxia-inducible factor-1α, vascular endothelial growth factor and endothelin-1 levels with neonatal hypoxic pulmonary hypertension

Bo Bai1, Bo Chen2,(), Guanghong Li1, Huiling Luo1, Nuanchao Huang1, Xueliang Huang1   

  1. 1. Department of Neonatology, Huadu Hospital Affiliated to Southern Medical University, Guangzhou 510800, Guangdong Province, China
    2. Department of Nosocomial Infection Management, Huadu Hospital Affiliated to Southern Medical University, Guangzhou 510800, Guangdong Province, China
  • Received:2018-07-29 Revised:2018-11-08 Published:2018-12-01
  • Corresponding author: Bo Chen
  • About author:
    Corresponding author: Chen Bo, Email:
  • Supported by:
    Science and Technology Planning Project of Department of Science and Technology of Guangdong Province(2017ZC0442); Science and Technology Planning Project of Industry and Information Technology Bureau in Huadu District of Guangzhou City(14-HDWS-001)
引用本文:

白波, 陈波, 李广洪, 罗惠玲, 黄暖潮, 黄学良. 血清缺氧诱导因子-1α、血管内皮生长因子、内皮素-1水平变化与新生儿缺氧性肺动脉高压的相关性研究[J]. 中华妇幼临床医学杂志(电子版), 2018, 14(06): 668-674.

Bo Bai, Bo Chen, Guanghong Li, Huiling Luo, Nuanchao Huang, Xueliang Huang. Study on the correlation of serum hypoxia-inducible factor-1α, vascular endothelial growth factor and endothelin-1 levels with neonatal hypoxic pulmonary hypertension[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2018, 14(06): 668-674.

目的

探讨血清缺氧诱导因子(HIF)-1α、血管内皮生长因子(VEGF)、内皮素-1(ET-1)水平,在新生儿缺氧性肺动脉高压(HPH)患儿中的变化及其与肺动脉收缩压(PASP)的关系。

方法

选取2014年1月12日至2017年12月19日,于南方医科大学附属花都医院新生儿科住院治疗的50例HPH新生儿为研究对象,纳入HPH组。根据HPH组新生儿PASP的不同,将其进一步分为中/重度HPH亚组(n=22,PASP>50 mmHg)与轻度HPH亚组(n=28,PASP为35~50 mmHg),1 mmHg=0.133 kPa。选取同期于本院新生儿科住院治疗的25例出生胎龄、日龄、性别、分娩方式、血清标本留取时间与HPH组匹配的非HPH新生儿(动态PASP<35 mmHg),纳入对照组。分别采用酶联免疫吸附测定(ELISA)法与超声心动图检测HPH组与对照组受试儿血清HIF-1α、VEGF、ET-1水平,以及PASP。HPH组与对照组血清HIF-1α、VEGF、ET-1水平比较,采用成组t检验;对中/重度HPH亚组、轻度HPH亚组与对照组上述指标比较,采用单因素方差分析,进一步两两比较,采用LSD法。血清HIF-1α、VEGF、ET-1水平与PASP的相关性,以及这3种因子之间的相关性,采用Pearson相关性分析。本研究通过南方医科大学附属花都医院医学伦理委员会审查(审批文号:14-HDWS-001)。HPH组与对照组患儿胎龄、日龄及性别、分娩方式、基础疾病构成比比较,差异均无统计学意义(P>0.05)。

结果

①HPH组患儿血清HIF-1α、VEGF及ET-1水平分别为(686.3±235.9)、(154.7±63.0)、(164.3±115.3) pg/mL,对照组分别为(260.9±132.0)、(96.2±30.3)、(41.9±3.7)pg/mL,HPH组患儿血清HIF-1α、VEGF及ET-1水平,均较对照组明显增高,2组比较,差异均有统计学意义(t=8.336、4.388、5.288,P<0.001)。中/重度HPH亚组、轻度HPH亚组、对照组患儿血清HIF-1α、VEGF、ET-1水平分别整体比较,差异均有统计学意义(F=156.362、36.956、67.464,P<0.001),进一步两两比较的结果显示,差异亦均有统计学意义(P<0.001),并且HPH病情越严重,这3种因子的血清水平越高。②所有患儿的血清HIF-1α、VEGF及ET-1水平,与其PASP均呈正相关关系(r=0.941、0.780、0.864,P<0.001)。③所有患儿的血清VEGF、ET-1水平与其血清HIF-1α水平均呈正相关关系(r=0.806、0.850,P<0.001)。

结论

缺氧可诱导新生儿HIF-1α表达增多,并上调VEGF及ET-1表达。HIF-1α可能在新生儿HPH发生过程中起着重要作用。

Objective

To explore the changes of serum hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1) in neonatal hypoxic pulmonary hypertension (HPH) and the relationship with pulmonary systolic blood pressure (PASP).

Methods

From January 12, 2014 to December 19, 2017, a total of 50 HPH neonates hospitalized in the Department of Neonatology, Huadu Hospital Affiliated to Southern Medical University were selected as research subjects and included into HPH group. According to PASP of HPH neonates, 50 HPH neonates were further divided into moderate/severe HPH subgroup (n=22, PASP was > 50 mmHg) and mild HPH subgroup (n=28, PASP was 35-50 mmHg), 1 mmHg=0.133 kPa. Meanwhile, another 25 non-HPH neonates (dynamic PASP was < 35 mmHg) hospitalized in the Department of Neonatology during the same period in the same hospital were selected as control group. Their gestational age at birth, day age, gender, mode of delivery and serum sample retention time were matched to those in HPH group . The levels of serum HIF-1α, VEGF and ET-1 were detected by enzyme linked immunosorbent assay (ELISA) method, and their PASP were estimated by echocardiography. Independent-samples t test was used for the comparison of serum HIF-1α, VEGF and ET-1 levels between HPH group and control group, while one-way ANOVA was used for the comparison among moderate/severe HPH subgroup, mild HPH subgroup and control group, and further pairwise comparison were analyzed by LSD method. Pearson correlation analysis was applied for the correlation between serum HIF-1α, VEGF, ET-1 levels and PASP, as well as between these three factors. This study was approved by the Ethics Committee of Human Beings in Huadu Hospital Affiliated to Southern Medical University (Approval Number: 14-HDWS-001). There were no statistically significant differences between HPH group and control group in gestational age, day age, and constituent ratios of gender, delivery mode and basic diseases (P>0.05).

Results

①The levels of serum HIF-1α, VEGF and ET-1 were (686.3 ± 235.9) g/mL, (154.7 ± 63.0) g/mL and (164.3 ± 115.3) pg/mL, respectively in HPH group. Those in control group were (260.9 ±132.0) g/mL, (96.2 ± 30.3) g/mL, (41.9 ± 3.7) pg/mL, respectively. The levels of serum HIF-1α, VEGF and ET-1 in HPH group were significantly higher than those in control group, and all the differences were statistically significant (t=8.336, 4.388, 5.288; P<0.001). There were statistically significant differences among moderate/severe HPH subgroup, mild HPH subgroup and control group in levels of serum HIF-1α, VEGF and ET-1 (F=156.362, 36.956, 67.464; P<0.001). For further pairwise comparison among those three groups, there were statistically significant differences between each groups in the aspects of levels of serum HIF-1α, VEGF and ET-1 (P<0.001). Furthermore, the higher the severity of HPH, the higher the serum levels of these three factors. ②Among all the subjects, the levels of serum HIF-1α, VEGF and ET-1 were positively correlated with PASP (r=0.941, 0.780, 0.864; P<0.001). ③The levels of serum VEGF and ET-1 were positively correlated with the level of serum HIF-1α among all the subjects (r=0.806, 0.850; P<0.001).

Conclusions

Hypoxia environment can induce increased expression of HIF-1α and upregulate the expression of VEGF and ET-1 through HIF-1α, which may play an important role in the development of neonatal HPH.

表1 不同组别受试儿血清HIF-1α、VEGF、ET-1水平比较(pg/mL,±s)
图1 所有受试儿血清HIF-1α水平与其PASP的相关性分析
图2 所有受试儿血清VEGF水平与其PASP的相关性分析
图3 所有受试儿血清ET-1水平与其PASP的相关性分析
图4 所有受试儿血清HIF-1α水平与其血清VEGF水平的相关性分析
图5 所有受试儿血清HIF-1α水平与其血清ET-1水平的相关性分析
[1]
李君,富建华,薛辛东,等. 低氧性肺动脉高压大鼠低氧诱导因子-1α表达及其意义[J]. 国际儿科学杂志,2014, 41(3): 305-309.
[2]
马义丽,王乐,李明霞. 缺氧诱导因子1α及血管内皮生因子在新生大鼠缺氧性肺动脉高压发病机制中的作用[J]. 中华新生儿科杂志,2017, 32(1): 64-68.
[3]
周英,王冬梅,朱艳萍,等. 缺氧诱导因子-1α在新生大鼠缺氧性肺动脉高压中的作用及其与肺血管重塑的关系[J]. 中华围产医学杂志,2014, 17(4): 260-266.
[4]
王莉,朱艳萍,李明霞. HIF-1α、ET-1和iNOS在新生儿缺氧性肺动脉高压发病中的作用[J]. 中国当代儿科杂志,2011, 13(1): 8-11.
[5]
薛守斌,王摇东,刘摇巍. 缺氧诱导因子1与缺氧性肺动脉高压的研究进展[J]. 医学综述,2013, 19(19): 3474-3477.
[6]
Wedgwood S, Lakshminrusimha S, Schumacker P, et al. Hypoxia inducible factor signaling and experimental persistent pulmonary hypertension of the newborn[J]. Front Pharmacol, 2015, 6: 47.
[7]
Park AM, Sanders TA, Maltepe E. Hypoxia-inducible factor (HIF) and HIF-stabilizing agents in neonatal care[J]. Semin Fetal Neonatal Med, 2010, 15(4): 196-202.
[8]
Dumas de la Roque E, Storme L, Mauriat P, et al. Pulmonary hypertension in pediatric and neonatal intensive care unit. Part Ⅱ:diagnosis and treatment[J]. Arch Pediatr, 2011, 18(2): 195-203.
[9]
中华医学会儿科学会新生儿学组. 新生儿肺动脉高压诊治专家共识[J]. 中华儿科杂志,2017, 55(3): 163-168.
[10]
杜薇,王洪,刘建伟. 超声心动图评价窒息儿和早产儿肺动脉压力[J]. 中国临床医学影像杂志,2012, 23(12): 899-900.
[11]
李梦溪,舒家泽,卢文菊,等. 缺氧诱导因子-1在缺氧性肺动脉高压病理机制中的作用[J].中华结核和呼吸杂志,2014, 37(10): 788-791.
[12]
Pawlus MR, Hu CJ. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response[J]. Cell Signal, 2013, 25(9): 1895-1903.
[13]
李小静,刘川川,刘辉琦,等. 低氧对大鼠血清bFGF、VEGF的表达和肺动脉超微结构的影响[J]. 中国高原医学与生物医学杂志,2017, 38(3): 164-170.
[14]
吴甜,屈艺,母得志. 早产儿支气管肺发育不良的研究进展[J/CD]. 中华妇幼临床医学杂志(电子版), 2016, 12(3): 339-343.
[15]
Abman SH. Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease[J]. Adv Exp Med Biol, 2010, 661: 323-335.
[16]
Kawanabe Y, Nauli SM. Endothelin[J]. Cell Mol Life Sci, 201l, 68(2): 195-203.
[17]
Hong XY, Hong X, Gu WW, et al. Cardioprotection and improvement in endothelial-dependent vasodilation during late-phase of whole body hypoxic preconditioning in spontaneously hypertensive rats via VEGF and endothelin-1[J]. Eur J Pharmacol, 2018, 842: 79-88.
[18]
Satwiko MG, Ikeda K, Nakayama K, et al. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension[J]. Biochem Biophys Res Commun, 2015, 465(3): 356-362.
[19]
王建荣,周英,桑葵,等. 缺氧性肺动脉高压新生大鼠肺血管重塑与肺血管HIF-1α、ET-1、iNOS表达的相关性研究[J]. 中国当代儿科杂志,2013, 15(2): 138-144.
[20]
曹静,朱艳萍,李明霞. 缺氧诱导因子-1α及下游因子在缺氧性肺动脉高压新生大鼠肺内的表达研究[J]. 中国新生儿科杂志,2014, 29(3): 194-199.
[21]
赵涛,李嘉颖. 缺氧诱导因子1α在慢阻肺中的表达及肺血管重构的关系[J]. 临床肺科杂志,2016, 21(1): 57-60.
[22]
李丽华,屈艺,毛萌,等. 缺氧诱导因子1α在新生鼠缺氧缺血性脑损伤的表达及意义[J/CD]. 中华妇幼临床医学杂志(电子版), 2007, 3(3): 126-128.
[23]
Ball MK, Waypa DB, Mungai PT, et al. Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1α[J]. Am J Respir Crit Care Med, 2014, 189(3): 314-324.
[24]
Jaitovich A, Jourd′ heuil D. A brief overview of nitric oxide and reactive oxygen species signaling in hypoxia-induced pulmonary hypertension[J]. Adv Exp Med Biol, 2017, 967:71-81.
[25]
Jiang Y, Zhou Y, Peng G, et al. Topotecan prevents hypoxia-induced pulmonary arterial hypertension and inhibits hypoxia-inducible factor-1α and TRPC channels[J]. Int J Biochem Cell Biol, 2018, 104: 161-170.
[26]
Liu J, Wang W, Wang L, et al. IL-33 initiates vascular remodelling in hypoxic pulmonary hypertension by up-regulating HIF-1α and VEGF expression in vascular endothelial cells[J]. EBioMedicine, 2018 , 33: 196-210.
[27]
Kumar S, Wang G, Liu W, et al. Hypoxia-induced mitogenic factor promotes cardiac hypertrophy via calcium-dependent and hypoxia-inducible factor-1α mechanisms[J]. Hypertension, 2018, 72(2): 331-342.
[28]
王学军. 先天性膈疝合并肺动脉高压的发病机制及其临床诊疗研究进展[J/CD]. 中华妇幼临床医学杂志(电子版), 2012, 8(1): 73-77.
[1] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[2] 杨莹, 刘艳, 王央丹. 新生儿结节性硬化症相关性癫痫1例并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 464-472.
[3] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[4] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[5] 赵金琦, 杨楠, 宫丽霏, 唐玥, 李璐璐, 杨海河, 孔元原. 2011—2020年北京市小于胎龄儿出生状况分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 278-286.
[6] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[7] 江振剑, 蒋明, 黄大莉. 基于决策曲线分析血清E-cad、HIF-1α预测乳腺癌改良根治术治疗预后的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 272-275.
[8] 王星月, 舒亮辉, 朝亚. 罗沙司他在炎症反应中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(02): 101-104.
[9] 冷玥祺, 廖衍沣, 武歆纯, 李美瑶, 石逸雯, 王晋豪, 杨嘉瑞, 李学民. 环境因素对眼部生理与病理影响的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 109-113.
[10] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[11] 李明, 姚文平, 黄谦, 祁红艳, 侍昊. 桂枝加葛根汤结合温针灸对颈性眩晕患者IL-6、hs-CRP、ET-1及NO的影响[J]. 中华针灸电子杂志, 2023, 12(03): 95-100.
[12] 颜凡辉, 赵明俐, 李颖, 郭方明, 詹景冬, 赵英杰, 王阳, 张艳芬, 赵笑梅. 急性冠脉综合征患者冠脉血管病变程度与血清TNF-α、VEGF水平相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 158-164.
[13] 强光峰, 孟兰兰, 赵静, 牛峰海, 任雪云. 肺部超声评分对呼吸困难新生儿使用有创机械通气的预测价值[J]. 中华诊断学电子杂志, 2023, 11(02): 104-108.
[14] 肖莹莹, 田茵琦, 彭雪梅. 减重手术胃肠道血流量下降的原因及干预措施[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 179-185.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要