切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2018, Vol. 14 ›› Issue (06) : 668 -674. doi: 10.3877/cma.j.issn.1673-5250.2018.06.008

所属专题: 文献

论著

血清缺氧诱导因子-1α、血管内皮生长因子、内皮素-1水平变化与新生儿缺氧性肺动脉高压的相关性研究
白波1, 陈波2,(), 李广洪1, 罗惠玲1, 黄暖潮1, 黄学良1   
  1. 1. 510800 广州,南方医科大学附属花都医院新生儿科
    2. 510800 广州,南方医科大学附属花都医院院感科
  • 收稿日期:2018-07-29 修回日期:2018-11-08 出版日期:2018-12-01
  • 通信作者: 陈波

Study on the correlation of serum hypoxia-inducible factor-1α, vascular endothelial growth factor and endothelin-1 levels with neonatal hypoxic pulmonary hypertension

Bo Bai1, Bo Chen2,(), Guanghong Li1, Huiling Luo1, Nuanchao Huang1, Xueliang Huang1   

  1. 1. Department of Neonatology, Huadu Hospital Affiliated to Southern Medical University, Guangzhou 510800, Guangdong Province, China
    2. Department of Nosocomial Infection Management, Huadu Hospital Affiliated to Southern Medical University, Guangzhou 510800, Guangdong Province, China
  • Received:2018-07-29 Revised:2018-11-08 Published:2018-12-01
  • Corresponding author: Bo Chen
  • About author:
    Corresponding author: Chen Bo, Email:
  • Supported by:
    Science and Technology Planning Project of Department of Science and Technology of Guangdong Province(2017ZC0442); Science and Technology Planning Project of Industry and Information Technology Bureau in Huadu District of Guangzhou City(14-HDWS-001)
引用本文:

白波, 陈波, 李广洪, 罗惠玲, 黄暖潮, 黄学良. 血清缺氧诱导因子-1α、血管内皮生长因子、内皮素-1水平变化与新生儿缺氧性肺动脉高压的相关性研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2018, 14(06): 668-674.

Bo Bai, Bo Chen, Guanghong Li, Huiling Luo, Nuanchao Huang, Xueliang Huang. Study on the correlation of serum hypoxia-inducible factor-1α, vascular endothelial growth factor and endothelin-1 levels with neonatal hypoxic pulmonary hypertension[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2018, 14(06): 668-674.

目的

探讨血清缺氧诱导因子(HIF)-1α、血管内皮生长因子(VEGF)、内皮素-1(ET-1)水平,在新生儿缺氧性肺动脉高压(HPH)患儿中的变化及其与肺动脉收缩压(PASP)的关系。

方法

选取2014年1月12日至2017年12月19日,于南方医科大学附属花都医院新生儿科住院治疗的50例HPH新生儿为研究对象,纳入HPH组。根据HPH组新生儿PASP的不同,将其进一步分为中/重度HPH亚组(n=22,PASP>50 mmHg)与轻度HPH亚组(n=28,PASP为35~50 mmHg),1 mmHg=0.133 kPa。选取同期于本院新生儿科住院治疗的25例出生胎龄、日龄、性别、分娩方式、血清标本留取时间与HPH组匹配的非HPH新生儿(动态PASP<35 mmHg),纳入对照组。分别采用酶联免疫吸附测定(ELISA)法与超声心动图检测HPH组与对照组受试儿血清HIF-1α、VEGF、ET-1水平,以及PASP。HPH组与对照组血清HIF-1α、VEGF、ET-1水平比较,采用成组t检验;对中/重度HPH亚组、轻度HPH亚组与对照组上述指标比较,采用单因素方差分析,进一步两两比较,采用LSD法。血清HIF-1α、VEGF、ET-1水平与PASP的相关性,以及这3种因子之间的相关性,采用Pearson相关性分析。本研究通过南方医科大学附属花都医院医学伦理委员会审查(审批文号:14-HDWS-001)。HPH组与对照组患儿胎龄、日龄及性别、分娩方式、基础疾病构成比比较,差异均无统计学意义(P>0.05)。

结果

①HPH组患儿血清HIF-1α、VEGF及ET-1水平分别为(686.3±235.9)、(154.7±63.0)、(164.3±115.3) pg/mL,对照组分别为(260.9±132.0)、(96.2±30.3)、(41.9±3.7)pg/mL,HPH组患儿血清HIF-1α、VEGF及ET-1水平,均较对照组明显增高,2组比较,差异均有统计学意义(t=8.336、4.388、5.288,P<0.001)。中/重度HPH亚组、轻度HPH亚组、对照组患儿血清HIF-1α、VEGF、ET-1水平分别整体比较,差异均有统计学意义(F=156.362、36.956、67.464,P<0.001),进一步两两比较的结果显示,差异亦均有统计学意义(P<0.001),并且HPH病情越严重,这3种因子的血清水平越高。②所有患儿的血清HIF-1α、VEGF及ET-1水平,与其PASP均呈正相关关系(r=0.941、0.780、0.864,P<0.001)。③所有患儿的血清VEGF、ET-1水平与其血清HIF-1α水平均呈正相关关系(r=0.806、0.850,P<0.001)。

结论

缺氧可诱导新生儿HIF-1α表达增多,并上调VEGF及ET-1表达。HIF-1α可能在新生儿HPH发生过程中起着重要作用。

Objective

To explore the changes of serum hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1) in neonatal hypoxic pulmonary hypertension (HPH) and the relationship with pulmonary systolic blood pressure (PASP).

Methods

From January 12, 2014 to December 19, 2017, a total of 50 HPH neonates hospitalized in the Department of Neonatology, Huadu Hospital Affiliated to Southern Medical University were selected as research subjects and included into HPH group. According to PASP of HPH neonates, 50 HPH neonates were further divided into moderate/severe HPH subgroup (n=22, PASP was > 50 mmHg) and mild HPH subgroup (n=28, PASP was 35-50 mmHg), 1 mmHg=0.133 kPa. Meanwhile, another 25 non-HPH neonates (dynamic PASP was < 35 mmHg) hospitalized in the Department of Neonatology during the same period in the same hospital were selected as control group. Their gestational age at birth, day age, gender, mode of delivery and serum sample retention time were matched to those in HPH group . The levels of serum HIF-1α, VEGF and ET-1 were detected by enzyme linked immunosorbent assay (ELISA) method, and their PASP were estimated by echocardiography. Independent-samples t test was used for the comparison of serum HIF-1α, VEGF and ET-1 levels between HPH group and control group, while one-way ANOVA was used for the comparison among moderate/severe HPH subgroup, mild HPH subgroup and control group, and further pairwise comparison were analyzed by LSD method. Pearson correlation analysis was applied for the correlation between serum HIF-1α, VEGF, ET-1 levels and PASP, as well as between these three factors. This study was approved by the Ethics Committee of Human Beings in Huadu Hospital Affiliated to Southern Medical University (Approval Number: 14-HDWS-001). There were no statistically significant differences between HPH group and control group in gestational age, day age, and constituent ratios of gender, delivery mode and basic diseases (P>0.05).

Results

①The levels of serum HIF-1α, VEGF and ET-1 were (686.3 ± 235.9) g/mL, (154.7 ± 63.0) g/mL and (164.3 ± 115.3) pg/mL, respectively in HPH group. Those in control group were (260.9 ±132.0) g/mL, (96.2 ± 30.3) g/mL, (41.9 ± 3.7) pg/mL, respectively. The levels of serum HIF-1α, VEGF and ET-1 in HPH group were significantly higher than those in control group, and all the differences were statistically significant (t=8.336, 4.388, 5.288; P<0.001). There were statistically significant differences among moderate/severe HPH subgroup, mild HPH subgroup and control group in levels of serum HIF-1α, VEGF and ET-1 (F=156.362, 36.956, 67.464; P<0.001). For further pairwise comparison among those three groups, there were statistically significant differences between each groups in the aspects of levels of serum HIF-1α, VEGF and ET-1 (P<0.001). Furthermore, the higher the severity of HPH, the higher the serum levels of these three factors. ②Among all the subjects, the levels of serum HIF-1α, VEGF and ET-1 were positively correlated with PASP (r=0.941, 0.780, 0.864; P<0.001). ③The levels of serum VEGF and ET-1 were positively correlated with the level of serum HIF-1α among all the subjects (r=0.806, 0.850; P<0.001).

Conclusions

Hypoxia environment can induce increased expression of HIF-1α and upregulate the expression of VEGF and ET-1 through HIF-1α, which may play an important role in the development of neonatal HPH.

表1 不同组别受试儿血清HIF-1α、VEGF、ET-1水平比较(pg/mL,±s)
图1 所有受试儿血清HIF-1α水平与其PASP的相关性分析
图2 所有受试儿血清VEGF水平与其PASP的相关性分析
图3 所有受试儿血清ET-1水平与其PASP的相关性分析
图4 所有受试儿血清HIF-1α水平与其血清VEGF水平的相关性分析
图5 所有受试儿血清HIF-1α水平与其血清ET-1水平的相关性分析
[1]
李君,富建华,薛辛东,等. 低氧性肺动脉高压大鼠低氧诱导因子-1α表达及其意义[J]. 国际儿科学杂志,2014, 41(3): 305-309.
[2]
马义丽,王乐,李明霞. 缺氧诱导因子1α及血管内皮生因子在新生大鼠缺氧性肺动脉高压发病机制中的作用[J]. 中华新生儿科杂志,2017, 32(1): 64-68.
[3]
周英,王冬梅,朱艳萍,等. 缺氧诱导因子-1α在新生大鼠缺氧性肺动脉高压中的作用及其与肺血管重塑的关系[J]. 中华围产医学杂志,2014, 17(4): 260-266.
[4]
王莉,朱艳萍,李明霞. HIF-1α、ET-1和iNOS在新生儿缺氧性肺动脉高压发病中的作用[J]. 中国当代儿科杂志,2011, 13(1): 8-11.
[5]
薛守斌,王摇东,刘摇巍. 缺氧诱导因子1与缺氧性肺动脉高压的研究进展[J]. 医学综述,2013, 19(19): 3474-3477.
[6]
Wedgwood S, Lakshminrusimha S, Schumacker P, et al. Hypoxia inducible factor signaling and experimental persistent pulmonary hypertension of the newborn[J]. Front Pharmacol, 2015, 6: 47.
[7]
Park AM, Sanders TA, Maltepe E. Hypoxia-inducible factor (HIF) and HIF-stabilizing agents in neonatal care[J]. Semin Fetal Neonatal Med, 2010, 15(4): 196-202.
[8]
Dumas de la Roque E, Storme L, Mauriat P, et al. Pulmonary hypertension in pediatric and neonatal intensive care unit. Part Ⅱ:diagnosis and treatment[J]. Arch Pediatr, 2011, 18(2): 195-203.
[9]
中华医学会儿科学会新生儿学组. 新生儿肺动脉高压诊治专家共识[J]. 中华儿科杂志,2017, 55(3): 163-168.
[10]
杜薇,王洪,刘建伟. 超声心动图评价窒息儿和早产儿肺动脉压力[J]. 中国临床医学影像杂志,2012, 23(12): 899-900.
[11]
李梦溪,舒家泽,卢文菊,等. 缺氧诱导因子-1在缺氧性肺动脉高压病理机制中的作用[J].中华结核和呼吸杂志,2014, 37(10): 788-791.
[12]
Pawlus MR, Hu CJ. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response[J]. Cell Signal, 2013, 25(9): 1895-1903.
[13]
李小静,刘川川,刘辉琦,等. 低氧对大鼠血清bFGF、VEGF的表达和肺动脉超微结构的影响[J]. 中国高原医学与生物医学杂志,2017, 38(3): 164-170.
[14]
吴甜,屈艺,母得志. 早产儿支气管肺发育不良的研究进展[J/CD]. 中华妇幼临床医学杂志(电子版), 2016, 12(3): 339-343.
[15]
Abman SH. Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease[J]. Adv Exp Med Biol, 2010, 661: 323-335.
[16]
Kawanabe Y, Nauli SM. Endothelin[J]. Cell Mol Life Sci, 201l, 68(2): 195-203.
[17]
Hong XY, Hong X, Gu WW, et al. Cardioprotection and improvement in endothelial-dependent vasodilation during late-phase of whole body hypoxic preconditioning in spontaneously hypertensive rats via VEGF and endothelin-1[J]. Eur J Pharmacol, 2018, 842: 79-88.
[18]
Satwiko MG, Ikeda K, Nakayama K, et al. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension[J]. Biochem Biophys Res Commun, 2015, 465(3): 356-362.
[19]
王建荣,周英,桑葵,等. 缺氧性肺动脉高压新生大鼠肺血管重塑与肺血管HIF-1α、ET-1、iNOS表达的相关性研究[J]. 中国当代儿科杂志,2013, 15(2): 138-144.
[20]
曹静,朱艳萍,李明霞. 缺氧诱导因子-1α及下游因子在缺氧性肺动脉高压新生大鼠肺内的表达研究[J]. 中国新生儿科杂志,2014, 29(3): 194-199.
[21]
赵涛,李嘉颖. 缺氧诱导因子1α在慢阻肺中的表达及肺血管重构的关系[J]. 临床肺科杂志,2016, 21(1): 57-60.
[22]
李丽华,屈艺,毛萌,等. 缺氧诱导因子1α在新生鼠缺氧缺血性脑损伤的表达及意义[J/CD]. 中华妇幼临床医学杂志(电子版), 2007, 3(3): 126-128.
[23]
Ball MK, Waypa DB, Mungai PT, et al. Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1α[J]. Am J Respir Crit Care Med, 2014, 189(3): 314-324.
[24]
Jaitovich A, Jourd′ heuil D. A brief overview of nitric oxide and reactive oxygen species signaling in hypoxia-induced pulmonary hypertension[J]. Adv Exp Med Biol, 2017, 967:71-81.
[25]
Jiang Y, Zhou Y, Peng G, et al. Topotecan prevents hypoxia-induced pulmonary arterial hypertension and inhibits hypoxia-inducible factor-1α and TRPC channels[J]. Int J Biochem Cell Biol, 2018, 104: 161-170.
[26]
Liu J, Wang W, Wang L, et al. IL-33 initiates vascular remodelling in hypoxic pulmonary hypertension by up-regulating HIF-1α and VEGF expression in vascular endothelial cells[J]. EBioMedicine, 2018 , 33: 196-210.
[27]
Kumar S, Wang G, Liu W, et al. Hypoxia-induced mitogenic factor promotes cardiac hypertrophy via calcium-dependent and hypoxia-inducible factor-1α mechanisms[J]. Hypertension, 2018, 72(2): 331-342.
[28]
王学军. 先天性膈疝合并肺动脉高压的发病机制及其临床诊疗研究进展[J/CD]. 中华妇幼临床医学杂志(电子版), 2012, 8(1): 73-77.
[1] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[2] 徐婷婷, 詹泳池, 王晓东, 刘兴会. 电子胎心监测结果出现正弦波形的胎母输血综合征围生期结局分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 382-389.
[3] 梅娟, 陶旭炜. 弥散性血管内凝血为首发表现先天性肝内门体静脉分流新生儿2例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 322-330.
[4] 邵小丽, 林燕, 张玲玲, 韩亚琴. 超声引导下子宫肌瘤注射聚桂醇硬化术联合术后米非司酮治疗临床疗效分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 353-360.
[5] 张禾璇, 杨雪, 王侣金, 李林洁, 刘兴宇. 新生儿葡萄糖-6-磷酸脱氢酶缺乏症筛查及基因突变特征分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 200-208.
[6] 梁靓, 谭征, 黄婷, 高跃, 章坚, 夏杰. 新生儿先天性膈疝术后呼吸支持相关危险因素分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 9-17.
[7] 花少栋, 李永超, 姜晨阳, 张盼, 池婧涵, 白芸, 高铭. 新生儿红斑狼疮临床特点及远期预后[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 74-80.
[8] 马海月, 南晓琴. 网织红细胞百分比/未成熟网织红细胞指数联合胆红素与白蛋白比值对新生儿溶血病的病情评估意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 89-96.
[9] 徐珍娥, 杨娅丽, 徐晨霞, 向巴曲西, 王家蓉. 无创脑水肿监测技术在高原地区重度窒息新生儿脑水肿中的临床应用[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 114-119.
[10] 郑伟军, 郑超, 方一凡, 吴典明, 王翔, 陈飞, 刘明坤. 新生儿急性阑尾炎17例诊治分析并文献回顾[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 291-293.
[11] 刘黎, 张灵, 王桢黎, 李希, 屈云. 经鼻高流量湿化氧疗在缺氧性呼吸衰竭患者的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 484-487.
[12] 李茂军, 唐彬秩, 吴青, 阳倩, 梁小明, 邹福兰, 黄蓉, 陈昌辉. 新生儿呼吸窘迫综合征的管理:多国指南/共识及RDS-NExT workshop 共识陈述简介和评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 607-617.
[13] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[14] 刘鑫, 裴思雨, 李志强, 陈成文, 傅硕, 卢领, 孙楠楠, 程守全, 谢冰, 张诗文, 王诚. 靶向药物联合缺损修复在成人先天性心脏病相关重度肺动脉高压的应用[J/OL]. 中华心脏与心律电子杂志, 2024, 12(02): 86-93.
[15] 周慧慧, 石洁, 陶晶晶. 探讨基于云平台的个案追踪管理在新生儿缺氧缺血性脑病出院后的应用[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(06): 591-595.
阅读次数
全文


摘要