[1] |
Siegel RL, Miller KD, Jemal A.Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30.
|
[2] |
Leamon CP, Lovejoy CD, Nguyen B. Patient selection and targeted treatment in the management of platinum-resistant ovarian cancer[J]. Pharmgenomics Pers Med, 2013, 6: 113-125.
|
[3] |
Wojcik S. Crosstalk between autophagy and proteasome protein degradation systems: possible implications for cancer therapy[J]. Folia Histochem Cytobiol, 2013, 51(4): 249-264.
|
[4] |
Ding WX, Ni HM, Gao W, et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability[J]. Am J Pathol, 2007, 171(2): 513-524.
|
[5] |
Han YH, Park WH. MG132, a proteasome inhibitor decreased the growth of Calu-6 lung cancer cells via apoptosis and GSH depletion[J]. Toxicol In Vitro, 2010, 24(4): 1237-1242.
|
[6] |
Zwickl P, Voges D, Baumeister W. The proteasome: a macromolecular assembly designed for controlled proteolysis[J]. Philos Trans R Soc Lond B Biol Sci, 1999, 354(1389): 1501-1511.
|
[7] |
Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms[J]. Biochim Biophys Acta, 2004, 1695(1-3): 55-72.
|
[8] |
Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling[J]. Science, 2007, 315(5809): 201-205.
|
[9] |
Goldberg AL. Nobel committee tags ubiquitin for distinction[J]. Neuron, 2005, 45(3): 339-344.
|
[10] |
Bai M, Zhao X, Sahara K, et al. Assembly mechanisms of specialized core particles of the proteasome[J]. Biomolecules, 2014, 4(3): 662-677.
|
[11] |
倪晓光,赵平. 泛素-蛋白酶体途径的组成和功能[J]. 生理科学进展,2006, 37(3): 255-258.
|
[12] |
Klionsky DJ. The molecular machinery of autophagy: unanswered questions[J]. J Cell Sci, 2005, 118(Pt 1): 7-18.
|
[13] |
Herman-Antosiewicz A, Johnson DE, Singh SV. Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells[J]. Cancer Res, 2006, 66(11): 5828-5835.
|
[14] |
Cheng J, Wei HL, Chen J, et al. Antitumor effect of arsenic trioxide in human K562 and K562/ADM cells by autophagy[J]. Toxicol Mech Methods, 2012, 22(7): 512-519.
|
[15] |
魏清,万小云. 自噬的诱导机制及其在肿瘤治疗中的作用[J]. 国际病理科学与临床杂志,2008, 28(1): 45-48.
|
[16] |
Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature, 1999, 402(6762): 672-676.
|
[17] |
Pattingre S, Espert L, Biard-Piechaczyk M, et al. Regulation of macroautophagy by mTOR and Beclin 1 complexes[J]. Biochimie, 2008, 90(2): 313-323.
|
[18] |
Liang XH, Kleeman LK, Jiang HH, et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein[J]. J Virol, 1998, 72(11): 8586-8596.
|
[19] |
Erlich S, Mizrachy L, Segev O, et al. Differential interactions between Beclin 1 and Bcl-2 family members[J]. Autophagy, 2007, 3(6): 561-568.
|
[20] |
Chipuk JE, Moldoveanu T, Llambi F, et al. The BCL-2 family reunion[J]. Mol Cell, 2010, 37(3): 299-310.
|
[21] |
Wirawan E, Vande Walle L, Kersse K, et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria[J]. Cell Death Dis, 2010, 1: e18.
|
[22] |
Li X, Su J, Xia M, et al. Caspase-mediated cleavage of Beclin1 inhibits autophagy and promotes apoptosis induced by S1 in human ovarian cancer SKOV3 cells[J]. Apoptosis, 2016, 21(2): 225-238.
|
[23] |
Shin JY, Hong SH, Kang B, et al. Overexpression of Beclin1 induced autophagy and apoptosis in lungs of K-rasLA1 mice[J]. Lung Cancer, 2013, 81(3): 362-370.
|
[24] |
Adams J. The development of proteasome inhibitors as anticancer drugs[J]. Cancer Cell, 2004, 5(5): 417-421.
|
[25] |
Kisselev AF, Goldberg AL.Proteasome inhibitors: from research tools to drug candidates[J]. Chem Biol, 2001, 8(8):739-758.
|
[26] |
Zhu H, Zhang L, Dong F, et al. Bik/NBK accumulation correlates with apoptosis-induction by bortezomib (PS-341, Velcade) and other proteasome inhibitors[J]. Oncogene, 2005, 24(31): 4993-4999.
|
[27] |
Ding WX, Ni HM, Chen X, et al. A coordinated action of Bax, PUMA, and p53 promotes MG132-induced mitochondria activation and apoptosis in colon cancer cells[J]. Mol Cancer Ther, 2007, 6(3): 1062-1069.
|
[28] |
Pigneux A, Mahon FX, Moreau-Gaudry F, et al. Proteasome inhibition specifically sensitizes leukemic cells to anthracyclin-induced apoptosis through the accumulation of Bim and Bax pro-apoptotic proteins[J]. Cancer Biol Ther, 2007, 6(4): 603-611.
|
[29] |
何洁儿,刘良平,詹姣,等. 抑制泛素-蛋白酶体途径对晶状体上皮细胞自噬的诱导作用[J]. 广东医学,2014, 35(1): 56-58.
|
[30] |
Liu D, Gao M, Yang Y, et al. Inhibition of autophagy promotes cell apoptosis induced by the proteasome inhibitor MG-132 in human esophageal squamous cell carcinoma EC9706 cells[J]. Oncol Lett, 2015, 9(5): 2278-2282.
|
[31] |
张静,李伟,章康健,等. MG132抑制肝癌细胞Bel-7404生长的机制研究[J]. 生物化学与生物物理进展,2010, 37(6): 627-634.
|
[32] |
French LE, Tschopp J. Protein-based therapeutic approaches targeting death receptors[J]. Cell Death Differ, 2003, 10(1): 117-123.
|
[33] |
Chen JJ, Bozza WP, Di X, et al. H-Ras regulation of TRAIL death receptor mediated apoptosis[J]. Oncotarget, 2014, 5(13): 5125-5137.
|
[34] |
Saulle E, Petronelli A, Pasquini L, et al. Proteasome inhibitors sensitize ovarian cancer cells to TRAIL induced apoptosis[J]. Apoptosis, 2007, 12(4): 635-655.
|
[35] |
Han J, Back SH, Hur J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death[J]. Nat Cell Biol, 2013, 15(5): 481-490.
|
[36] |
Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress[J]. Cell Death Differ, 2004, 11(4): 381-389.
|
[37] |
Li Y, Guo Y, Tang J, et al. New insights into the roles of CHOP-induced apoptosis in ER stress[J]. Acta Biochim Biophys Sin (Shanghai), 2014, 46(8): 629-640.
|
[38] |
麻庆乐,卢德赵. 葡萄糖调节蛋白78的研究进展[J]. 生命科学,2017, 29(4): 331-335.
|
[39] |
唐隽,刘川,都伟,等. GRP78在蛋白酶体抑制剂诱导卵巢癌细胞凋亡中的作用[J]. 中国计划生育学杂志,2015, 23(11): 739-742.
|
[40] |
唐隽,刘川,都伟. 蛋白酶体抑制剂通过内质网应激途径诱导卵巢癌细胞凋亡的研究[J]. 中国计划生育学杂志,2015, 23(8): 520-523, 529.
|
[41] |
Du ZX, Meng X, Zhang HY, et al. Caspase-dependent cleavage of BAG3 in proteasome inhibitors-induced apoptosis in thyroid cancer cells[J]. Biochem Biophys Res Commun, 2008, 369(3): 894-898.
|
[42] |
Doong H, Vrailas A, Kohn EC. What′s in the ′BAG′:a functional domain analysis of the BAG-family proteins[J]. Cancer Lett, 2002, 188(1-2): 25-32.
|
[43] |
Wang HQ, Meng X, Gao YY, et al. Characterization of BAG3 cleavage during apoptosis of pancreatic cancer cells[J]. J Cell Physiol, 2010, 224(1): 94-100.
|
[44] |
穆庆,李百鸥. 蛋白酶体抑制剂诱导卵巢癌SKOV3细胞凋亡中伴随caspase依赖的BAG3剪切[J]. 现代肿瘤医学,2013, 21(5): 991-994.
|
[45] |
Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors[J]. Oncogene, 1999, 18(49): 6853-6866.
|
[46] |
Chen FE, Ghosh G. Regulation of DNA binding by Rel/NF-kappaB transcription factors: structural views[J]. Oncogene, 1999, 18(49): 6845-6852.
|
[47] |
Barkett M, Gilmore TD. Control of apoptosis by Rel/NF-kappaB transcription factors[J]. Oncogene, 1999, 18(49): 6910-6924.
|
[48] |
Wang CY, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation[J]. Science, 1998, 281(5383): 1680-1683.
|
[49] |
Guttridge DC, Albanese C, Reuther JY, et al. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1[J]. Mol Cell Biol, 1999, 19(8): 5785-5799.
|
[50] |
马忠平,顾光华,贾玉芳. 蛋白酶体抑制剂MG132对Caov-3细胞中NF-κB、CycLinD1表达的影响[J]. 实用临床医药杂志,2011, 15(17): 46-48.
|
[51] |
顾光华,张磊,李彩霞. MG132、顺铂联合用药对Caov-3细胞中NF-κB、VEGF表达的影响[J]. 实用临床医药杂志,2010, 14(17): 22-25.
|
[52] |
Liu C, Yan X, Wang HQ, et al. Autophagy-independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors[J]. BMC Cancer, 2012, 12(1): 622.
|
[53] |
刘川,王华芹,高雁艳,等. 3-甲基腺嘌呤对蛋白酶体抑制剂MG132抗卵巢癌A2870细胞作用的影响[J]. 现代肿瘤医学,2013, 21(4): 682-685.
|
[54] |
刘川,王华芹,高雁艳,等. 蛋白酶体抑制剂诱导OVCAR3卵巢癌细胞自噬的机制研究[J]. 现代肿瘤医学,2013, 21(8): 1680-1684.
|
[55] |
郭娜,彭芝兰. 蛋白酶体抑制剂MG132诱导卵巢癌SKOV3细胞凋亡和自噬的作用机制[J]. 国际妇产科学杂志,2017, 44(1): 44-47, 94, 123.
|
[56] |
Guo N, Peng Z, Zhang J. Proteasome inhibitor MG132 enhances sensitivity to cisplatin on ovarian carcinoma cells in vitro and in vivo[J]. Int J Gynecol Cancer, 2016, 26(5): 839-844.
|