Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2024, Vol. 20 ›› Issue (02): 200 -208. doi: 10.3877/cma.j.issn.1673-5250.2024.02.011

Pediatric Rare Diseases and Genetic Testing

Screening and genetic mutation analysis of glucose-6-phosphate dehydrogenase deficiency in neonates

Hexuan Zhang1,(), Xue Yang1, Lyujin Wang1, Linjie Li1, Xingyu Liu1   

  1. 1. Department of Eugenics and Genetics, Guiyang Maternity and Child Health Care Hospital, Guiyang 550001, Guizhou Province, China
  • Received:2023-10-08 Revised:2024-02-20 Published:2024-04-01
  • Corresponding author: Hexuan Zhang
  • Supported by:
    Clinical Special Project of Science and Technology Plan of Department of Science and Technology of Guizhou Provine(LC[2022]005); High-Level Innovative Youth Health Talent Training Program of Guiyang Health and Family Planning Commission([2022]001); Guiyang Science and Technology Plan Project([2023]48-25, [2023]028)
Objective

To explore the incidence and genetic mutation characteristics of glucose-6-phosphate dehydrogenase (G6PD) deficiency in neonates of Guiyang area.

Methods

A total of 89 715 neonates born in all delivery institutions in Guiyang from September 1, 2020 to June 30, 2022 and screened for G6PD deficiency were selected as research subjects. Dried blood spot of heel blood (DBS) were collected from all neonates, and fluorescence analysis method was used for the initial quantitative screening of G6PD activity. Neonates who were positive for initial screening of G6PD deficiency with G6PD≤27 U/dL were recalled to the Guiyang Neonatal Disease Screening Center. And 1-2 mL of fasting peripheral venous blood was collected from each of them, and G6PD/6-phosphogluconate dehydrogenase (6PGD) ratio method and multicolor melting curve analysis (MMCA) gene mutation detection were conducted to diagnose G6PD deficiency in neonates. This study was approved by the Ethics Committee of Guiyang Maternity and Child Health Care Hospital (Approval No. 2021-56) and clinical research informed consents were obtained from the guardians of neonates.

Results

Among the 89 715 neonates, the positive of initial screening rate for G6PD deficiency was 1.40% (1 254/89 715), with males at 1.85% (888/47 983) and females at 0.88% (366/41 732). The positive rate of initial screening for G6PD deficiency of male was statistically higher than that of female, and the difference was statistically significant (χ2=153.52, P<0.001). Among the 1 254 newborns who were positive for initial screening of G6PD deficiency, the recall rate was 74.96% (940/1 254). Of those 940 recalled neonates, 895 cases were diagnosed as G6PD deficiency, with a recall diagnosis rate of 95.21% (895/940), and the recall diagnosis rate of male was 98.10% (673/686), and the rate of female was 87.40% (222/254). For 940 recalled neonates, 694 cases were diagnosed as G6PD deficiency by G6PD/6PGD ratio method, and the diagnosis rate of G6PD/6PGD ratio method was 73.83% (694/940). The diagnosis rate of male neonates by G6PD/6PGD ratio method was 82.51% (566/686), which was significantly higher than 50.39% (128/254) of female neonates, and the difference was statistically significant (χ2=98.94, P<0.001). And 846 cases were diagnosed as G6PD deficiency by MMCA gene mutation detection, and the diagnosis rate of MMCA gene mutation detection was 90.00% (846/940). The diagnosis rate for male neonates by MMCA gene mutation detection was 95.48% (655/686), which was significantly higher than 75.20% (191/254) for female neonates, and the difference was statistically significant (χ2=84.74, P<0.001). Among the 846 neonates diagnosed with G6PD deficiency by gene testing, there were 13 types of single G6PD gene mutations and 6 types of compound heterozygous mutations. The top four hotspot mutation types were c. 1024C>T (235 cases, 27.78%), c. 1388G>A (205 cases, 24.23%), c. 95A>G (163 cases, 19.27%), and c. 1376G>T (152 cases, 17.97%).

Conclusions

Among neonates in Guiyang who are positive for initial screening of G6PD deficiency, the recall rate for re-examination is relatively low. The top four hotspot G6PD gene mutations in neonates with G6PD deficiency in Guiyang are c. 1024C>T, c. 1388G>A, c.95A>G, and c. 1376G>T. Conducting G6PD activity screening and related diagnostic tests is beneficial for the early diagnosis and treatment of G6PD deficiency in neonates.

表1 被成功召回复查的940例G6PD缺乏症初筛结果呈阳性新生儿G6PD缺乏症确诊结果
图1 1例G6PD缺乏症新生儿(男性,生后20 d) G6PD基因纯合突变MMCA法检测图谱,其外周血样本在ROX通道有突变峰(橘色曲线),而其余熔解峰均为野生峰(黑色曲线),突变峰熔点(Tm值)为68.58 ℃(红色箭头所示),野生峰Tm值为72.06 ℃(黄色箭头所示),野生峰与突变峰熔点差值(ΔTm值)为3.48 ℃,判断为c.1024C>T纯合突变  图2 1例G6PD缺乏症新生儿(女,生后18 d) G6PD基因杂合突变MMCA法检测图谱,其外周血样本在ROX通道既有野生峰(黑色曲线)又有突变峰(橘色曲线),突变峰熔点(Tm值)为68.13 ℃(红色箭头所示),野生峰Tm值为72.38 ℃(黄色箭头所示),野生峰与突变峰熔点差值(ΔTm值)为4.25 ℃,判断为c.1024C>T杂合突变注:G6PD为葡萄糖-6-磷酸脱氢酶,MMCA为多色探针荧光熔解曲线
图3 1例G6PD缺乏症新生儿(女,生后20 d) G6PD基因复合杂合突变MMCA法检测图谱,其外周血样本在ROX、Cy5通道均有2个突变峰(橘色、红色曲线),其余熔解峰为野生峰(黑色曲线),根据野生峰与突变峰熔点差值(ΔTm值),判断为c.1024C>T+c.1376G>T复合杂合突变(图3A:ROX通道图谱;图3B:Cy5通道图谱)(箭头所示为突变峰、熔解峰Tm值)注:G6PD为葡萄糖-6-磷酸脱氢酶,MMCA为多色探针荧光熔解曲线
表2 846例经基因突变检测确诊为G6PD缺乏症新生儿的G6PD基因突变类型分布
[1]
Uyoga S, Macharia AW, Ndila CM, et al.Glucose-6-phosphate dehydrogenase deficiency and susceptibility to childhood diseases in Kilifi, Kenya[J]. Blood Adv, 2020, 4(23): 5942-5950. DOI: 10.1182/bloodadvances.2020003015.
[2]
Li J, Chen Y, Ou Z, et al. Aspirin therapy in cardiovascular disease with glucose-6-phosphate dehydrogenase deficiency, safe or not?[J]. Am J Cardiovasc Drugs, 2021, 21(4): 377-382. DOI: 10.1007/s40256-020-00460-8.
[3]
Christensen RD, Yaish HM, Wiedmeier SE, et al. Neonatal death suspected to be from sepsis was found to be kernicterus with G6PD deficiency[J]. Pediatrics, 2013, 132(6): e1694-e1698. DOI: 10.1542/peds.2013-1030.
[4]
石海杰,陈秋霞. 海南省苗族新生儿葡萄糖-6-磷酸脱氢酶缺乏症发病情况及基因特征分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2021, 17(3): 278-283. DOI: 10.3877/cma.j.issn.1673-5250.2021.03.007.
[5]
郭静,田国力,王燕敏,等. 葡萄糖-6-磷酸脱氢酶缺乏症新生儿葡萄糖-6-磷酸脱氢酶及其基因突变的研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2020, 16(6): 672-679. DOI: 10.3877/cma.j.issn.1673-5250.2020.06.008.
[6]
Liu Z, Yu C, Li Q, et al. Chinese newborn screening for the incidence of G6PD deficiency and variant of G6PD gene from 2013 to 2017[J]. Hum Mutat, 2020, 41(1): 212-221. DOI: 10.1002/humu.23911.
[7]
国家卫生健康委临床检验中心新生儿疾病筛查室间质评专家委员会. 新生儿葡萄糖-6-磷酸脱氢酶缺乏症筛查与诊断实验室检测技术专家共识[J]. 中华检验医学杂志2019, 42(3): 181-185. DOI: 10.3760/cma.j.issn.1009-9158.2019.03.007.
[8]
原国家卫生部. 新生儿疾病筛查技术规范(2010年版)[EB/OL]. (2010-11) [2023-12-28].

URL    
[9]
陈灵莉,吴鼎文,朱琳,等. 浙江地区新生儿葡萄糖-6-磷酸脱氢酶缺乏症的遗传学分析[J]. 中国实用儿科杂志2019, 34(11): 907-910. DOI: 10.19538/j.ek2019110608.
[10]
杨笑. 中国大陆儿童葡萄糖-6-磷酸脱氢酶缺乏症患病率流行病学调查[D]. 南宁:广西医科大学,2019.
[11]
周婧瑶,张钰,胡琦,等. 四川地区新生儿G6PD缺乏症筛查及确诊情况分析[J]. 中国妇幼健康研究2020, 31(2): 263-266. DOI: 10.3969/j.issn.1673-5293.2020.02.025.
[12]
赖春慧,李荣,蒙春华. 4 296例新生儿G6PD筛查结果分析[J]. 医学检验与临床2019, 30(3): 27-29. DOI: 10.3969/j.issn.1673-5013.2019.03.008.
[13]
苗静琨,万科星,张娟,等. 重庆地区开展新生儿CAH和G6PD筛查的初步报告[C]//中华医学会第十五次全国儿科学术大会论文汇编,成都,2010. 北京:中华医学会,2010: 230-231.
[14]
王玉婉,苏红苗,卢德,等. 琼海市新生儿G6PD缺乏筛查结果分析[J]. 华南预防医学2021, 47(3): 378-380. DOI: 10.12183/j.scjpm.2021.0378.
[15]
杜丹红,蔡炜,赵丽. 无锡地区新生儿G6PD缺乏症筛查结果分析[J]. 华南预防医学2021, 47(11): 1464-1466. DOI: 10.12183/j.scjpm.2021.1464.
[16]
厉勇,杨明,菲肖琨. 贵阳地区新生儿G6PD酶筛查结果分析[J]. 中国实验诊断学2014, 18(7): 1171-1172.
[17]
封露露,李丽欣,马翠霞,等. 石家庄地区新生儿G6PD缺乏症筛查结果及基因突变分析[J]. 国际生殖健康/计划生育杂志2021, 40(4): 282-285. DOI: 10.12280/gjszjk.20200696.
[18]
Banyatsuppasin W, Jindadamrongwech S, Limrungsikul A, et al. Prevalence of thalassemia and glucose-6-phosphate dehydrogenase deficiency in newborns and adults at the Ramathibodi Hospital, Bangkok, Thailand[J]. Hemoglobin, 2017, 41(4-6): 260-266. DOI: 10.1080/03630269.2017.1402026.
[19]
Assefa A, Ali A, Deressa W, et al. Glucose-6-phosphate dehydrogenase (G6PD) deficiency in Ethiopia: absence of common African and Mediterranean allelic variants in a nationwide study[J]. Malar J, 2018, 17(1): 388. DOI: 10.1186/s12936-018-2538-4.
[20]
Pengboon P, Thamwarokun A, Changsri K, et al. Evaluation of quantitative biosensor for glucose-6-phosphate dehydrogenase activity detection[J]. PLoS One, 2019, 14(12): e0226927. DOI: 10.1371/journal.pone.0226927.
[21]
LaRue N, Kahn M, Murray M, et al. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency[J]. Am J Trop Med Hyg, 2014, 91(4): 854-861. DOI: 10.4269/ajtmh.14-0194.
[22]
Hsia YE, Miyakawa F, Baltazar J, et al. Frequency of glucose-6-phosphate dehydrogenase (G6PD) mutations in Chinese, Filipinos, and Laotians from Hawaii[J]. Hum Genet, 1993, 92(5): 470-476. DOI: 10.1007/BF00216453.
[23]
肖奇志,郭洪创,李恋湘,等. G6PD活性、UGT1A1SLCO1B1ABCC2基因多态性和新生儿高胆红素血症的关系研究[J]. 分子诊断与治疗杂志2018, 10(3): 163-168. DOI: 10.3969/j.issn.1674-6929.2018.03.005.
[24]
俸诗瀚,黄丽梅,蒋婷婷,等. 广西壮族自治区新生儿葡萄糖-6-磷酸脱氢酶缺乏症的遗传学分析[J]. 中华地方病学杂志2021, 40(11): 927-931. DOI: 10.3760/cma.j.cn231583-20210130-00031.
[25]
郭昭鹏,吴群燕,陈仕国,等. 深圳地区育龄人群G6PD基因突变谱特征分析[J]. 中国计划生育学杂志2020, 28(1): 18-21. DOI: 10.3969/j.issn.1004-8189.2020.01.004.
[26]
黄慈丹,刘秀莲,许海珠,等. 海南黎族自治县地区新生儿G6PD缺乏症基因分析[J]. 中国热带医学2021, 21(3): 225-228, 273. DOI: 10.13604/j.cnki.46-1064/r.2021.03.05.
[27]
李卉,江雨霏,高唐鑫子,等. 武汉地区葡萄糖-6-磷酸脱氢酶缺乏症患者基因突变分析[J]. 中国实验血液学杂志2022, 30(1): 244-249. DOI: 10.19746/j.cnki.issn1009-2137.2022.01.041.
[28]
张鑫,刘朔,李苗苗,等. 菏泽地区新生儿G6PD缺乏症基因突变的检测[J]. 青岛大学学报(医学版), 2023, 59(2): 174-178. DOI: 10.11712/jms.2096-5532.2023.59.050.
[29]
刘晓丽,王秋华,黄钧,等. 柳州地区新生儿G6PD缺乏症筛查结果及基因型分布[J]. 中国妇幼保健2021, 36(24): 5790-5793. DOI: 10.19829/j.zgfybj.issn.1001-4411.2021.24.055.
[30]
黄慈丹,刘秀莲,杨春,等. 海南省妇女儿童医学中心5246名女性新生儿葡萄糖-6-磷酸脱氢酶基因型与酶活性分析[J]. 中国实用儿科杂志2022, 37(9): 695-700. DOI: 10.19538/j.ek2022090610.
[31]
黄盛文,吴娴,许吟,等. 贵阳地区新生儿G6PD缺乏症分子筛查结果分析[J]. 重庆医学2016, 45(11): 1505-1507. DOI: 10.3969/j.issn.1671-8348.2016.11.019.
[32]
余江,章涛,王钰莹,等. 遵义地区G6PD缺乏症患儿基因突变类型及临床特点分析[J].中华地方病学杂志2022, 41(8): 639-643. DOI:10.3760/cma.j.cn231583-20210806-00256.
[1] Ming Wu, Fenhua Zhu, Danru Liu, Yeheng Yu, Tong Lin, Jian Li. Children mucolipidosis caused by GNPTAB/GNPTG gene mutations: two cases report and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(02): 185-191.
[2] Zhou Jiang, Li Tang, Liu Yang, Lin Zou. Analysis of influencing factors of diagnosis time in infants with congenital hypothyroidism[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 649-656.
[3] Tiantian Chen, Xiaodong Wang, Haiyan Yu. Pregnancy outcome of twin pregnancy with Gitelman syndrome: a case report and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(05): 559-568.
[4] Lulan Kan, Maoqiang Tian, Yimi Tang. Children with mild Gitelman syndrome presenting with recurrent abdominal pain: a case report and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(04): 473-479.
[5] Dongming Li, Sheng He. Research progress on early screening for congenital cytomegalovirus infection[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(06): 627-633.
[6] Jialin Mu, Xuefei Leng, Fei Tian, Lina Wang, Zhihong Chen. Sotos syndeome with a novel mutation in NSD1 gene: a case report and domestic literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(06): 692-702.
[7] Xufeng Luo, Jianxiang Liao, Zhiqiang Luo, Jing Duan, Yongli Li, Jianfang Xu, Li Chen. Na+ channel blockers in treatment of early-onset epileptic encephalopathy caused by SCN2A gene variation: a case report and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 585-590.
[8] Lei Liu, Jun Zhu, Lixin Wan, Kui Deng, Yaqiong Yan, Min Li, Yongna Yao, Liangcheng Xiang, Xuelian Yuan, Qi Li, Zheng Liu, Xiaohong Li. Impact of national policies related to neonatal inherited metabolic diseases screening on its coverage rate of midwestern regions in China[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(04): 410-418.
[9] Yutao Yuan, Jinlin Xing, Kefei Xie, Kai Yin. Correlation between CT findings and BRAFV600E gene mutation and central lymph node metastasis in papillary thyroid carcinoma[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(06): 611-614.
[10] Yao Yao, Yang Gao, Junqi Shan, Xinyu Li, Wei Han, Zengjun Li, Yanlai Sun. A case report of c.531+6T>G heterozygous mutation in familial adenomatous polyposis[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2024, 13(01): 72-77.
[11] Dayang Zhou, Chang Liu, Jian Huang, Ning Xu, Xiang Ji, Kexin Yang, Jibang Peng, Hai Pan, Wenjing Xu, Zhu Zhu. A casereport of BRCA1 p.R166fs mutation in colon cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2024, 13(01): 68-71.
[12] Haoli Fu, Cheng Zhang, Shuting Liang, Zequn Miao, Qingyu Meng, Lynzhen Huang, Lili Guo, Qianru Ouyang, Xin Xu, Yu Cao, Jingyi Zhang, Lejin Wang. Identificationon of a novel nonsense mutation of FRMD7 in a family with congenital nystagmus[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(03): 152-157.
[13] Cuiping Yang, Xiaojin Yang, Xu Quan, Ling Xie, Yunlin Wu, Ping Chen. Effects of hepatocyte nuclear factor-1α mutation and adenomatous polyposis coli mutation on familial adenomatous polyposis cell proliferation[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2022, 12(04): 228-231.
[14] Qian Wang, Yongping Wang, Xinpei Li, Chengyan Yang, Hui Xu, Fengjuan Sun, Yaping Liu. Diagnostic characteristics of hypokalemia with gene mutations[J]. Chinese Journal of Diagnostics(Electronic Edition), 2023, 11(02): 115-119.
[15] Wenxia Shi, Yongxin Guo, Junjie Shen, Wenming Chen, Wenwen Guo, Tongfeng Zhao, Dandan Zhao, Jian Chen, Zhongliang Sun, Daoping Sun. The impact of RUNX1 mutations on clinical characteristics, therapeutic efficacy, and prognosis in adults with acute myeloid leukemia[J]. Chinese Journal of Diagnostics(Electronic Edition), 2022, 10(03): 163-170.
Viewed
Full text


Abstract