Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2024, Vol. 20 ›› Issue (01): 47 -57. doi: 10.3877/cma.j.issn.1673-5250.2024.01.007

Original Article

Prognosis of neoadjuvant chemotherapy combined with interval cytoreductive surgery and predictive value of serological and imaging indicators for optimal cytoreductive surgery in patients with epithelial ovarian cancer

Xinlin He1, Haozheng Yan1, Yifei Zhao1, Caixia Jiang1, Zhengyu Li1,()   

  1. 1. Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2023-12-15 Revised:2024-01-16 Published:2024-02-01
  • Corresponding author: Zhengyu Li
  • Supported by:
    Natural Science Foundation of Sichuan Province(2023NSFSC0743)
Objective

To investigate the prognosis of neoadjuvant chemotherapy (NACT) combined with interval cytoreductive surgery (CS) in treatment of patients with epithelial ovarian cancer (EOC), and analyze the predictive value of serological and imaging indicators in EOC patients for reaching macroscopic residual lesion naught (R0) after primary cytoreductive surgery (PCS).

Methods

A total of 129 EOC patients who underwent NACT combined with interval CS in West China Second University Hospital, Sichuan University from March 2014 to July 2018 were enrolled as research subjects. Patients were enrolled into R0 group (n=72) and non-R0 group (n=57) according to whether the patients reached R0 after PCS. The serological indicators of two groups were collected, including the serum level of carbohydrate antigen 125 (CA125), neutrophil-to-lymphocyte ratio (NLR), lymphocyte-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR) and the image indicator (maximum diameter of tumor on ultrasound or CT examination) of patients before and after PCS. Results of examinations before PCS was recorded as CA125-1, NLR-1, LMR-1, PLR-1 and maximum diameter-1, and results of examinations after PCS was recorded as CA125-2, NLR-2, LMR-2, PLR-2 and maximum diameter-2. The change values between them were recorded as CA125-ratio, NLR-ratio, LMR-ratio, PLR-ratio, and maximum diameter-ratio. Mann-Whitney U test was used for comparison of these indicators between the R0 and non-R0 groups. The receiver operating characteristic (ROC) curve of serological and imaging indicators in predicting R0 in PCS of EOC patients was plotted, and the optimal cut-off value for prediction was determined. The prediction performance of single and combined indicators in predicting R0 in PCS of EOC patients was calculated. Cox proportional hazards regression analysis was used to compare the overall survival (OS) and progression-free survival (PFS) curves of EOC patients in the R0 and non-R0 groups and patients under different NACT cycles that met the combined diagnostic criteria of serological and imaging indicators. The procedures followed in this study were in line with the requirements of the World Medical Association Declaration of Helsinki revised in 2013.

Results

①The OS rate of R0 group (60.0%) was higher than that of non-R0 group (28.6%), and the difference was statistically different (HR=0.370, 95%CI: 0.194-0.703, P=0.002). There was no significant difference in PFS rate between R0 group (40.3%) and non-R0 group (54.4%) (P=0.122). ②The differences in CA125-ratio, NLR-2 and LMR-2 between R0 group and non-R0 group were statistically significant (Z=-3.09, -2.14, -2.40; P=0.002, 0.033, 0.017), but there was no significant difference in PLR-ratio between two groups (P=0.912). ③Results of the ROC curve of CA125-ratio, 1-NLR-2, LMR-2 and maximum diameter-ratio for predicting R0 in PCS of EOC patients showed that the optimal cutoff value for prediction of achieve R0 was CA125-ratio>93.64%, NLR-2<2.14, LMR-2>4.34 according to the principle of maximum Youden index, and their positive predictive values were 71.0%, 65.6%, and 68.2 %, respectively. According to response evaluation criteria in solid tumors (RECIST) 1.1, maximum diameter-ratio >20% was used to predict R0 in PCS of EOC patients, and its positive predictive value was 62.9%. Combining these four indicators, when the patient met ≥3 or 4 of CA125-ratio>93.6%, NLR-2<2.14, LMR-2>4.34, and maximum diameter-ratio>20%, its positive predictive values of achieving R0 in EOC patients were 75.7% and 88.2%, respectively. ④Results of Cox proportional hazards regression analysis showed that there was no significant difference in the OS curves of EOC patients with different NACT cycles (< 3, 3 and >3 cycles) that met ≥3 of the above indicators (P>0.05), but with the increase of NACT cycles, the OS rate of EOC patients showed a downward trend.

Conclusions

The OS rate of EOC patients who reach R0 in PCS after NACT is higher than that of those who do not reach R0. The positive predictive value of combination of CA125-ratio >93.6%, NLR-2<2.14, LMR-2>4.34 and maximum diameter-ratio>20% for prediction of R0 in EOC patients is higher than the positive predictive value predicted by a single indicator. When patients with EOC meet ≥3 of the above indicators, the termination of NACT may help patients achieve higher OS rates.

表1 129例ECO患者一般临床资料分析[例数(%)]
图1 采用Cox比例风险回归分析方法绘制的EOC患者OS及PFS曲线(图1A:所有患者OS曲线;图1B:R0组与非R0组OS曲线;图1C:所有患者PFS曲线;图1D:R0组与非R0组PFS曲线)注:EOC为上皮性卵巢癌,OS为总体生存,PFS无进展生存。R0组指初次肿瘤细胞减灭术中无肉眼可见残留病灶,非R0组指初次肿瘤细胞减灭术中有肉眼可见残留病灶
表2 EOC患者OS期影响因素的多因素Cox比例风险回归分析结果
临床因素 B SE Wald P HR HR值95%CI
年龄 -0.018 0.033 0.307 0.580 0.982 0.920~1.047
未绝经 -0.167 0.497 0.113 0.737 0.846 0.319~2.242
BMI -0.068 0.054 1.558 0.212 0.934 0.840~1.039
ASA分级(vs ASA分级为1级)            
2级 0.601 1.970 0.093 0.760 1.824 0.038~86.660
3级 0.446 0.439 1.030 0.310 1.562 0.660~3.694
术前合并症 -0.241 0.361 0.447 0.504 0.786 0.387~1.594
NACT周期数(vs 1个NACT周期)            
2个 0.607 2.390 0.065 0.799 1.835 0.017~198.440
3个 1.447 2.339 0.382 0.536 4.249 0.043~416.479
4个 1.384 2.313 0.358 0.550 3.991 0.043~371.488
5个 -11.020 510.599 <0.001 0.983 <0.001 <0.001
6个 2.767 2.553 1.175 0.278 15.912 0.107~2 368.330
化疗方案(vs TP)            
CP 1.253 1.080 1.346 0.246 3.503 0.421~29.106
TP+CP -10.796 510.504 <0.001 0.983 <0.001 <0.001
盆腔淋巴结切除 -0.405 0.492 0.679 0.410 0.667 0.254~1.748
腹主动脉旁淋巴结切除 0.487 0.447 1.186 0.276 1.627 0.678~3.907
合并腹水 0.450 0.353 1.623 0.203 1.568 0.785~3.131
手术时间 -0.001 0.002 0.346 0.557 0.999 0.995~1.003
术中输血 -0.396 0.388 1.042 0.307 0.673 0.315~1.440
FIGO分期为Ⅳ期(vsⅢ期) -0.891 0.583 2.335 0.126 0.410 0.131~1.286
达R0 -0.996 0.328 9.208 0.002 0.370 0.194~0.703
未使用白蛋白 0.152 0.480 0.100 0.752 1.164 0.454~2.985
术后输血 0.183 0.454 0.162 0.687 1.201 0.493~2.923
总住院天数 0.201 0.064 9.963 0.002 1.223 1.079~1.385
ICU住院天数 -0.288 0.251 1.323 0.250 0.750 0.459~1.225
术后至化疗间隔时间 0.051 0.020 6.418 0.011 1.052 1.012~1.095
术后化疗次数 -0.038 0.040 0.902 0.342 0.963 0.891~1.041
表3 EOC患者PFS期影响因素的多因素Cox比例风险回归分析结果
临床因素 B SE Wald P HR HR值95%CI
年龄 0.003 0.037 0.013 0.909 1.003 0.932~1.079
未绝经 0.653 0.621 1.108 0.293 1.922 0.569~6.489
BMI -0.087 0.055 2.538 0.111 0.916 0.823~1.020
ASA分级(vs ASA分级为1级)            
2级 0.705 1.493 0.223 0.637 2.024 0.109~37.715
3级 -1.037 0.446 5.404 0.020 0.354 0.148~0.850
术前合并症 0.826 0.583 2.008 0.157 2.284 0.729~7.157
NACT周期数(vs 1个NACT周期)            
2个 2.137 1.756 1.482 0.224 8.474 0.271~264.496
3个 -0.146 1.317 0.012 0.912 0.864 0.065~11.415
4个 0.359 1.309 0.075 0.784 1.432 0.110~18.643
5个 0.527 1.238 0.181 0.671 1.693 0.150~19.170
6个 -1.316 1.464 0.808 0.369 0.268 0.015~4.728
化疗方案(vs TP)            
CP -0.732 0.895 0.667 0.414 0.481 0.083~2.786
TP+CP 1.169 1.515 0.596 0.440 3.219 0.165~62.673
盆腔淋巴结切除 -0.070 0.816 0.007 0.932 0.933 0.188~4.165
腹主动脉旁淋巴结切除 1.120 0.614 3.329 0.068 3.065 0.920~10.212
合并腹水 0.827 0.384 4.645 0.031 2.288 1.078~4.855
手术时间 0.004 0.003 1.725 0.189 1.004 0.998~1.011
术中输血 0.613 0.545 1.262 0.261 1.845 0.634~5.374
FIGO分期为Ⅳ期(vsⅢ期) -0.498 0.699 0.508 0.261 1.845 0.634~5.374
达R0 0.585 0.378 2.395 0.122 1.794 0.856~3.762
未使用白蛋白 0.100 0.487 0.043 0.837 1.106 0.425~2.875
术后输血 0.982 0.483 4.138 0.042 2.669 1.036~6.873
总住院天数 -0.187 0.113 2.725 0.099 0.830 0.665~1.036
ICU住院天数 -0.346 0.282 1.510 0.219 0.707 0.407~1.229
术后至化疗间隔时间 0.089 0.026 11.829 0.001 1.094 1.039~1.151
术后化疗次数 -0.090 0.073 1.516 0.218 0.914 0.791~1.055
表4 R0组与非R0组EOC患者血清学指标比较[M(Q1Q3)]
图2 血清学指标与肿块最大径-ratio预测EOC患者PCS达R0的ROC曲线注:CA125-ratio、肿块最大径-ratio计算公式为(1-PCS前最后1次检查结果/入院后第1次检查结果)×100%。NLR-2、LMR-2指PCS前最后1次检查的NLR、LMR。R0指PCS中无肉眼可见残留病灶。EOC为上皮性卵巢癌,PCS为初次肿瘤细胞减灭术,ROC曲线为受试者工作特征曲线。CA125为糖类抗原125,PLR为血小板与淋巴细胞比值,NLR为中性粒细胞与淋巴细胞比值,LMR为淋巴细胞与单核细胞比值
表5 血清学指标与肿块最大径-ratio单独及联合预测EOC患者PCS达R0的预测效能
图3 不同NACT周期数满足CA125-ratio>93.6%、NLR-2<2.14、LMR-2>4.34、肿块最大径-ratio>20%这4项指标或满足其中≥3项指标的EOC患者的OS曲线(图3A:满足4项指标的EOC患者;图3B:满足≥3项指标的EOC患者)注:CA125-ratio、肿块最大径-ratio计算公式为(1-PCS前最后1次检查结果/入院后第1次检查结果)×100%。NLR-2、LMR-2指PCS前最后1次检查的NLR、LMR。R0指PCS中无肉眼可见残留病灶。NACT为新辅助化疗,EOC为上皮性卵巢癌,OS为总体生存。CA125为糖类抗原125,PLR为血小板与淋巴细胞比值,NLR为中性粒细胞与淋巴细胞比值,LMR为淋巴细胞与单核细胞比值,PCS为初次肿瘤细胞减灭术
表6 不同NACT周期数EOC患者OS期的Cox比例风险回归分析结果
[1]
Park SJ, Shim SH, Ji YI, et al. Reduction of cycles of neoadjuvant chemotherapy for advanced epithelial ovarian, fallopian or primary peritoneal cancer (ROCOCO): study protocol for a phase Ⅲ randomized controlled trial[J]. BMC Cancer, 2020, 20(1): 385. DOI: 10.1186/s12885-020-06886-2.
[2]
Altman AD, McGee J, May T, et al. Neoadjuvant chemotherapy and chemotherapy cycle number: a national multicentre study[J]. Gynecol Oncol, 2017, 147(2): 257-261. DOI: 10.1016/j.ygyno.2017.08.006.
[3]
National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology-ovarian cancer/fallopian tube cancer/primary peritoneal cancer version 2.2023[DB/OL]. (2023-06-02)[2024-01-04].

URL    
[4]
Kumari A, Thakur M, Saha SC, et al. To compare the optimal cytoreduction rate in advanced epithelial ovarian cancer stage Ⅲ/Ⅳ after 3 versus 6 cycles of neoadjuvant chemotherapy[J]. J Obstet Gynaecol, 2021, 41(4): 616-620. DOI: 10.1080/01443615.2020.1787967.
[5]
Xu X, Deng F, Lv M, et al. The number of cycles of neoadjuvant chemotherapy is associated with prognosis of stage Ⅲc-Ⅳ high-grade serous ovarian cancer[J]. Arch Gynecol Obstet, 2017, 295(2): 451-458. DOI: 10.1007/s00404-016-4256-x.
[6]
Ain QU, Muhammad S, Hai Y, et al. The role of urine and serum biomarkers in the early detection of ovarian epithelial tumours[J]. J Obstet Gynaecol, 2022, 42(8): 3441-3449. DOI: 10.1080/01443615.2022.2151352.
[7]
Lauby A, Colomban O, Corbaux P, et al. The increasing prognostic and predictive roles of the tumor primary chemosensitivity assessed by CA-125 Elimination Rate Constant K (KELIM) in ovarian cancer: a narrative review[J]. Cancers (Basel), 2021, 14(1): 98. DOI: 10.3390/cancers14010098.
[8]
Alegría-Baños JA, Jiménez-López JC, Vergara-Castañeda A, et al. Kinetics of HE4 and CA125 as prognosis biomarkers during neoadjuvant chemotherapy in advanced epithelial ovarian cancer[J]. J Ovarian Res, 2021, 14(1): 96. DOI: 10.1186/s13048-021-00845-6.
[9]
Gülseren V, Çakir i, Özdemir iA, et al. The role of changes in systemic inflammatory response markers during neoadjuvant chemotherapy in predicting suboptimal surgery in ovarian cancer[J]. Curr Probl Cancer, 2020, 44(4): 100536. DOI: 10.1016/j.currproblcancer.2020.100536.
[10]
Kovács AR, Sulina A, Kovács KS, et al. Prognostic significance of preoperative NLR, MLR, and PLR values in predicting the outcome of primary cytoreductive surgery in serous epithelial ovarian cancer[J]. Diagnostics (Basel), 2023, 13(13): 2268. DOI: 10.3390/diagnostics13132268.
[11]
Zhu JY, Liu CC, Wang L, et al. Peripheral blood lymphocyte-to-monocyte ratio as a prognostic factor in advanced epithelial ovarian cancer: a multicenter retrospective study[J]. J Cancer, 2017, 8(5): 737-743. DOI: 10.7150/jca.17668.
[12]
Nie D, Gong H, Mao X, et al Systemic immune-inflammation index predicts prognosis in patients with epithelial ovarian cancer: a retrospective study[J]. Gynecol Oncol, 2019, 152(2): 259-264. DOI: 10.1016/j.ygyno.2018.11.034.
[13]
Tate Thigpen J. Contemporary phase Ⅲ clinical trial endpoints in advanced ovarian cancer: assessing the pros and cons of objective response rate, progression-free survival, and overall survival[J]. Gynecol Oncol, 2015, 136(1): 121-129. DOI: 10.1016/j.ygyno.2014.10.010.
[14]
Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247. DOI: 10.1016/j.ejca.2008.10.026.
[15]
Pölcher M, Mahner S, Ortmann O, et al. Neoadjuvant chemotherapy with carboplatin and docetaxel in advanced ovarian cancer--a prospective multicenter phase Ⅱ trial (PRIMOVAR)[J]. Oncol Rep, 2009, 22(3): 605-613. DOI: 10.3892/or_00000479.
[16]
Griffiths CT. Surgical resection of tumor bulk in the primary treatment of ovarian carcinoma[J]. Natl Cancer Inst Monogr, 1975, 42: 101-104.
[17]
中华人民共和国国家健康卫生委员会. 卵巢癌诊疗指南(2022年版)[EB/OL]. (2022-04-03)[2024-01-04].

URL    
[18]
Smith JJ, Paty PB, Garcia-Aguilar J. Watch and wait in rectal cancer or more wait and see?[J] JAMA Surg, 2020, 155(7): 657-658. DOI: 10.1001/jamasurg.2020.0226.
[19]
Lee JM, McNamee CJ, Toloza E, et al. Neoadjuvant targeted therapy in resectable non-small cell lung cancer: current and future perspectives[J]. J Thorac Oncol, 2023, 8(11): 1458-1477. DOI: 10.1016/j.jtho.2023.07.006.
[20]
Liu H, Luo M, Peng C, et al. A retrospective analysis for investigating the relationship between FIGO stage ⅣA/ⅣB and cytoreductive surgery with prognosis in epithelial ovarian cancer[J]. Front Oncol, 2023, 13: 1103357. DOI: 10.3389/fonc.2023.1103357.
[21]
Perrone AM, Coada CA, Ravegnini G, et al. Post-operative residual disease and number of cycles of neoadjuvant chemotherapy in advanced epithelial ovarian carcinoma[J]. Int J Gynecol Cancer, 2023, 33(8): 1270-1278. DOI: 10.1136/ijgc-2022-004249.
[22]
Abbas-Aghababazadeh F, Sasamoto N, Townsend MK, et al. Predictors of residual disease after debulking surgery in advanced stage ovarian cancer[J]. Front Oncol, 2023, 13: 1090092. DOI: 10.3389/fonc.2023.1090092.
[23]
Marchetti C, Rosati A, De Felice F, et al. Optimizing the number of cycles of neoadjuvant chemotherapy in advanced epithelial ovarian carcinoma: a propensity-score matching analysis[J]. Gynecol Oncol, 2021, 163(1): 29-35. DOI: 10.1016/j.ygyno.2021.07.025.
[24]
Vincent L, Jankowski C, Ouldamer L, et al. Prognostic factors of overall survival for patients with FIGO stage Ⅲc orⅣa ovarian cancer treated with neo-adjuvant chemotherapy followed by interval debulking surgery: a multicenter cohort analysis from the FRANCOGYN study group[J]. Eur J Surg Oncol, 2020, 46(9): 1689-1696. DOI: 10.1016/j.ejso.2020.04.029.
[25]
王登凤,张国楠,彭春蓉,等. 晚期卵巢上皮性癌患者NACT+IDS治疗模式的预后获益及影响因素分析[J]. 中华妇产科杂志2021, 56(6): 385-392. DOI: 10.3760/cma.j.cn112141-20201207-00871.
[26]
You B, Freyer G, Gonzalez-Martin A, et al. The role of the tumor primary chemosensitivity relative to the success of the medical-surgical management in patients with advanced ovarian carcinomas[J]. Cancer Treat Rev, 2021, 100: 102294. DOI: 10.1016/j.ctrv.2021.102294.
[27]
Chan JC, Chan DL, Diakos CI, et al. The lymphocyteto-monocyte ratio is a superior predictor of overall survival in comparison to established biomarkers of resectable colorectal cancer[J]. Ann Surg, 2017, 265(3): 539-546. DOI: 10.1097/SLA.0000000000001743.
[28]
郑晓霞,李大鹏. 中性粒细胞计数与淋巴细胞计数比值对局部晚期宫颈癌患者新辅助化疗疗效的预测价值[J/OL]. 中华妇幼临床医学杂志(电子版), 2020, 16(5): 558-566. DOI: 10.3877/cma.j.issn.1673-5250.2020.05.009.
[29]
唐英,李均,胡辉权,等. 血小板与淋巴细胞比值对卵巢癌患者国际妇产科联盟临床分期的预测价值[J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(3): 268-274. DOI: 10.3877/cma.j.issn.1673-5250.2019.03.006.
[30]
Kosidło JW, Wolszczak-Biedrzycka B, Matowicka-Karna J, et al. Clinical significance and diagnostic utility of NLR, LMR, PLR and SII in the course of COVID-19: a literature review[j]. J Inflamm Res, 2023, 16: 539-562. DOI: 10.2147/JIR.S395331.
[31]
Piotrowski D, Sczewska-Piotrowska A, Jaroszewicz J, et al. Lymphocyte-to-monocyte ratio as the best simple predictor of bacterial infection in patients with liver cirrhosis[J]. Int J Environ Res Public Health, 2020, 17(5): 1727. DOI: 10.3390/ijerph17051727.
[32]
Yin R, Guo Y, Wang Y, et al. Predicting neoadjuvant chemotherapy response and high-grade serous ovarian cancer from CT images in ovarian cancer with multitask deep learning: a multicenter study[J]. Acad Radiol, 2023, 30(Suppl 2): S192-S201. DOI: 10.1016/j.acra.2023.04.036.
[33]
Kodipalli A, Fernandes SL, Gururaj V, et al. Performance analysis of segmentation and classification of CT-scanned ovarian tumours using U-net and deep convolutional neural networks[J]. Diagnostics (Basel), 2023, 13(13): 2282. DOI: 10.3390/diagnostics13132282.
[34]
Alizzi Z, Gogbashian A, Karteris E, et al. Development of a dual energy CT based model to assess response to treatment in patients with high grade serous ovarian cancer: a pilot cohort study[J]. Cancer Imaging, 2023, 23(1): 62. DOI: 10.1186/s40644-023-00579-2.
[35]
Koutras A, Perros P, Prokopakis I, et al. Advantages and limitations of ultrasound as a screening test for ovarian cancer[J]. Diagnostics (Basel), 202313(12): 2078. DOI: 10.3390/diagnostics13122078.
[1] Wei Hong, Xirong Ye, Zhihong Liu, Yinfeng Yang, Zhihong Lyu. Value of ultrasound radiomics combined with clinicopathological features in predicting complete pathological response to neoadjuvant chemotherapy for breast cancer[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(06): 571-579.
[2] Jingyu Qian, Mingming Zheng. Interpretation of the Italian guidelines on non-invasive and invasive prenatal diagnosis:executive summary of recommendations for practice the Italian Society for Obstetrics and Gynecology(SIGO)[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 486-492.
[3] Xialin Li, Fang He. Risk assessment and early warning system for postpartum hemorrhage[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 498-503.
[4] Ziyang Liu, Jianjian Cui, Yin Zhao. Current research status on obstetric disseminated intravascular coagulation and its scoring system[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 511-518.
[5] Fanying Zeng, Jie Ruan, Xinghui Liu, Guolin He. Current status of perinatal medicine advances under the new reproductive situation and coping strategies in prenatal care[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 519-524.
[6] Xiaofei Li, Hongli Liu, Qiuling Shi, Jing Tian, Li Li, Hongbo Qi, Xin Luo. A prospective randomized controlled study of low intensity focused ultrasound uterine involution treatment for prevention and treatment of postpartum hemorrhage in natural childbirth women[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 534-539.
[7] Rong Huang, Ziyu Liang, Wenjin Qi. Expression and significance of NLRP3 inflammasome in serum of pregnant women with premature rupture of membranes[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 540-548.
[8] Xia He, Rong Huang, Wenjin Qi. High-throughput sequencing study on the abundance of placenta and fetal membrane flora in pregnant women with premature rupture of membranes[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 549-555.
[9] Jiangyan Xie, Yafei Wang, Fang He. Pregnancy complicated with thrombotic thrombocytopenic purpura:two cases report and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 556-563.
[10] Jie Xu, Yajun Li, Yiwen Feng. Comparison of recent follow-up between laparoscopic D2 radical surgery and conventional radical surgery for advanced gastric cancer after SOX neoadjuvant chemotherapy[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2024, 18(06): 647-650.
[11] Hao Zhang, Weidong Pan. Current status and progress in assessment of resectability of pancreatic cancer after neoadjuvant chemotherapy[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(05): 629-633.
[12] Jiagang Han, Zhenjun Wang. The treatment strategies for obstructive left-sided colon cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2024, 13(06): 450-458.
[13] Yang Shi, Jianfeng Yu, Ke Cao, Zhiwei Zhai, Chunxiang Ye, Zhenjun Wang, Jiagang Han. Perioperative complication analysis of self-expanding metallic stents (sems) combined with neoadjuvant chemotherapy in the treatment of complete obstructive left-sided colon cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2024, 13(06): 464-471.
[14] Xuanhao Liang, Xiaorong Li, Liang Li, Changwei Lin. Efficacy and prognosis of colonic stenting combined with neoadjuvant chemotherapy for acute obstructive colorectal cancer: a Meta-analysis[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2024, 13(06): 472-482.
[15] Mengting Zhang, Lamu Qiong, Zhen Se, Yiqun Li, Wangmu DeQing. Neoadjuvant chemotherapy for breast cancer patients in Tibet: a real-world study[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(05): 441-446.
Viewed
Full text


Abstract