[1] |
饶健. 小鼠肺部微生物组发育特征及早期菌群稳态调节抗病毒免疫功能的机制研究[D]. 北京:中国医学科学院·北京协和医学院,2019: 1-2.
|
[2] |
von Mutius E. Intimate crosstalk in lower airways at the beginning of life[J]. Cell Host Microbe, 2018, 24(6): 758-759. DOI: 10.1016/j.chom.2018.11.014.
|
[3] |
Dickson RP, Huffnagle GB. The lung microbiome: new principles for respiratory bacteriology in health and disease[J]. PLoS Pathog, 2015, 11(7): e1004923. DOI: 10.1371/journal.ppat.1004923.
|
[4] |
Faner R, Sibila O, Agusti A, et al. The microbiome in respiratory medicine: current challenges and future perspectives[J]. Eur Respir J, 2017, 49(4): 1602086. DOI: 10.1183/13993003.02086-2016.
|
[5] |
Liu Q, Liu Q, Meng H, et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production[J]. Cell Host Microbe, 2020, 27(1):68.e5-78.e5. DOI: 10.1016/j.chom.2019.11.003.
|
[6] |
Permall DL, Pasha AB, Chen XQ, et al. The lung microbiome in neonates[J]. Turk J Pediatr, 2019, 61(6): 821-830. DOI: 10.24953/turkjped.2019.06.001.
|
[7] |
de Steenhuijsen Piters WAA, Binkowska J, Bogaert D. Early life microbiota and respiratory tract infections[J]. Cell Host Microbe, 2020, 28(2): 223-232. DOI: 10.1016/j.chom.2020.07.004.
|
[8] |
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count[J]. Front Immunol, 2022, 13: 1031924. DOI: 10.3389/fimmu.2022.1031924.
|
[9] |
Gallacher DJ, Kotecha S. Respiratory microbiome of new-born infants[J]. Front Pediatr, 2016, 4: 10. DOI: 10.3389/fped.2016.00010.
|
[10] |
Grier A, McDavid A, Wang B, et al. Neonatal gut and respiratory microbiota: coordinated development through time and space[J]. Microbiome, 2018, 6(1): 193. DOI: 10.1186/s40168-018-0566-5.
|
[11] |
Biesbroek G, Tsivtsivadze E, Sanders EA, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children[J]. Am J Respir Crit Care Med, 2014, 190(11): 1283-1292. DOI: 10.1164/rccm.201407-1240OC.
|
[12] |
Charlson ES, Bittinger K, Chen J, et al. Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts[J]. PLoS One, 2012, 7(9): e42786. DOI: 10.1371/journal.pone.0042786.
|
[13] |
Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease[J]. Expert Rev Respir Med, 2013, 7(3): 245-257. DOI: 10.1586/ers.13.24.
|
[14] |
Lal CV, Travers C, Aghai ZH, et al. The airway microbiome at birth[J]. Sci Rep, 2016, 6: 31023. DOI: 10.1038/srep31023.
|
[15] |
Pattaroni C, Watzenboeck ML, Schneidegger S, et al. Early-life formation of the microbial and immunological environment of the human airways[J]. Cell Host Microbe, 2018, 24(6): 857-865. DOI: 10.1016/j.chom.2018.10.019.
|
[16] |
Thorsen J, Rasmussen MA, Waage J, et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma[J]. Nat Commun, 2019, 10(1): 5001. DOI: 10.1038/s41467-019-12989-7.
|
[17] |
DiGiulio DB, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation[J]. PLoS One, 2008, 3(8): e3056. DOI: 10.1371/journal.pone.0003056.
|
[18] |
Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome[J]. Sci Transl Med, 2014, 6(237): 237r-265r. DOI: 10.1126/scitranslmed.3008599.
|
[19] |
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proc Natl Acad Sci U S A, 2010, 107(26): 11971-11975. DOI: 10.1073/pnas.1002601107.
|
[20] |
Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system[J]. Science, 2016, 352(6285): 539-544. DOI: 10.1126/science.aad9378.
|
[21] |
Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease[J]. Nat Rev Microbiol, 2022: 1-14. DOI: 10.1038/s41579-022-00821-x.
|
[22] |
Dickson RP, Erb-Downward JR, Huffnagle GB. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis[J]. Lancet Respir Med, 2014, 2(3): 238-246. DOI: 10.1016/S2213-2600(14)70028-1.
|
[23] |
Mathieu E, Escribano-Vazquez U, Descamps D, et al. Paradigms of lung microbiota functions in health and disease, particularly, in asthma[J]. Front Physiol, 2018, 9: 1168. DOI: 10.3389/fphys.2018.01168.
|
[24] |
Segal LN, Clemente JC, Tsay JC, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype[J]. Nat Microbiol, 2016, 1: 16031. DOI: 10.1038/nmicrobiol.2016.31.
|
[25] |
|
[26] |
Schmidt A, Belaaouaj A, Bissinger R, et al. Neutrophil elastase-mediated increase in airway temperature during inflammation[J]. J Cyst Fibros, 2014, 13(6): 623-631. DOI: 10.1016/j.jcf.2014.03.004.
|
[27] |
Garzoni C, Brugger SD, Qi W, et al. Microbial communities in the respiratory tract of patients with interstitial lung disease[J]. Thorax, 2013, 68(12): 1150-1156. DOI: 10.1136/thoraxjnl-2012-202917.
|
[28] |
Thibeault C, Suttorp N, Opitz B. The microbiota in pneumonia: from protection to predisposition[J]. Sci Transl Med, 2021, 13(576): eaba0501. DOI: 10.1126/scitranslmed.aba0501.
|
[29] |
Nesbitt H, Burke C, Haghi M. Manipulation of the upper respiratory microbiota to reduce incidence and severity of upper respiratory viral infections: a literature review[J]. Front Microbiol, 2021, 12: 713703. DOI: 10.3389/fmicb.2021.713703.
|
[30] |
Wang J, Li F, Sun R, et al. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages[J]. Nat Commun, 2013, 4: 2106. DOI: 10.1038/ncomms3106.
|
[31] |
Wu BG, Sulaiman I, Tsay JJ, et al. Episodic aspiration with oral commensals induces a MyD88-dependent, pulmonary T-helper cell type 17 response that mitigates susceptibility to Streptococcus pneumoniae[J]. Am J Respir Crit Care Med, 2021, 203(9): 1099-1111. DOI: 10.1164/rccm.202005-1596OC.
|
[32] |
Stankovic M, Veljovic K, Popovic N, et al. Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22 exhibit anti-inflammatory effect by attenuation of nf-kappaB and MAPK signaling in human bronchial epithelial cells[J]. Int J Mol Sci, 2022, 23(10): 5547. DOI: 10.3390/ijms23105547.
|
[33] |
Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes[J]. Nature, 1996, 383(6603): 787-793. DOI: 10.1038/383787a0.
|
[34] |
Saeedi P, Salimian J, Ahmadi A, et al. The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system[J]. Inhal Toxicol, 2015, 27(10): 451-461. DOI: 10.3109/08958378.2015.1070220.
|
[35] |
Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1[J]. Nat Med, 2014, 20(6): 642-647. DOI: 10.1038/nm.3568.
|
[36] |
Yagi K, Huffnagle GB, Lukacs NW, et al. The lung microbiome during health and disease[J]. Int J Mol Sci, 2021, 22(19): 10872. DOI: 10.3390/ijms221910872.
|
[37] |
Merenstein C, Bushman FD, Collman RG. Alterations in the respiratory tract microbiome in COVID-19: current observations and potential significance[J]. Microbiome, 2022, 10(1): 165. DOI: 10.1186/s40168-022-01342-8.
|
[38] |
|
[39] |
|
[40] |
Dick S, Friend A, Dynes K, et al. A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years[J]. BMJ Open, 2014, 4(11): e6554. DOI: 10.1136/bmjopen-2014-006554.
|
[41] |
Jackson CM, Kaplan AN, Järvinen KM. Environmental exposures may hold the key; Impact of air pollution, greenness, and rural/farm lifestyle on allergic outcomes[J]. Curr Allergy Asthma Rep, 2023, 23(2): 77-91. DOI: 10.1007/s11882-022-01061-y.
|
[42] |
Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma[J]. Nat Med, 2020, 26(11): 1766-1775. DOI: 10.1038/s41591-020-1095-x.
|
[43] |
Losol P, Park HS, Song WJ, et al. Association of upper airway bacterial microbiota and asthma: systematic review[J]. Asia Pac Allergy, 2022, 12(3): e32. DOI: 10.5415/apallergy.2022.12.e32.
|
[44] |
O′Connor JB, Mottlowitz MM, Wagner BD, et al. Divergence of bacterial communities in the lower airways of CF patients in early childhood[J]. PLoS One, 2021, 16(10): e257838. DOI: 10.1371/journal.pone.0257838.
|
[45] |
Frayman KB, Wylie KM, Armstrong DS, et al. Differences in the lower airway microbiota of infants with and without cystic fibrosis[J]. J Cyst Fibros, 2019, 18(5): 646-652. DOI: 10.1016/j.jcf.2018.12.003.
|
[46] |
Narang R, Bakewell K, Peach J, et al. Bacterial distribution in the lungs of children with protracted bacterial bronchitis[J]. PLoS One, 2014, 9(9): e108523. DOI: 10.1371/journal.pone.0108523.
|
[47] |
Cuthbertson L, Craven V, Bingle L, et al. The impact of persistent bacterial bronchitis on the pulmonary microbiome of children[J]. PLoS One, 2017, 12(12): e190075. DOI: 10.1371/journal.pone.0190075.
|