Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2023, Vol. 19 ›› Issue (01): 31 -37. doi: 10.3877/cma.j.issn.1673-5250.2023.01.005

Forum

Research progress on respiratory system microflora and development characteristics of lung microbiome and homeostasis of lung microflora in early life

Yulian Chen, Hanmin Liu()   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2022-12-07 Revised:2023-01-14 Published:2023-02-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    Regional Innovation and Development Joint Fund Project of National Natural Science Foundation of China(U21A20333)

The composition (type and quantity) of respiratory system microflora in early life has been one of the research hotspots in the field of children′s respiratory in recent years. More and more studies suggest that respiratory tract exposure to bacteria in early life is an important factor in the development of lung immune system, and the composition of respiratory system microflora can affect the pulmonary functions and respiration physiological functions, so as to regulate the body′s susceptibility to respiratory pathogens and external stimuli. Early life is the initial period of exposure to environmental stimuli and microbial colonization, and is also a critical period for lung development. The developmental characteristics of lung microbiome and homeostasis of lung microflora in early life may affect the differentiation and maturation of lung immune cells, and the imbalance of lung microbiome may increase the risk of lung infection. Studies have shown that respiratory system microflora varies with the occurrence of lung disease and is related to the severity of lung disease. Therefore, it is very important to explore the interaction between developmental characteristics of lung microbiome, homeostasis of lung microflora in early life and the host for the study of pathogenesis of lung infection diseases. The author intends to discuss the composition and origin of respiratory system microflora in early life, factors affecting the developmental characteristics of lung microbiome and homeostasis of lung microflora in early life, regulation effects of normal respiratory system microflora on lung immune system, and the abnormal respiratory system microflora and lung infection diseases in early life.

[1]
饶健. 小鼠肺部微生物组发育特征及早期菌群稳态调节抗病毒免疫功能的机制研究[D]. 北京:中国医学科学院·北京协和医学院,2019: 1-2.
[2]
von Mutius E. Intimate crosstalk in lower airways at the beginning of life[J]. Cell Host Microbe, 2018, 24(6): 758-759. DOI: 10.1016/j.chom.2018.11.014.
[3]
Dickson RP, Huffnagle GB. The lung microbiome: new principles for respiratory bacteriology in health and disease[J]. PLoS Pathog, 2015, 11(7): e1004923. DOI: 10.1371/journal.ppat.1004923.
[4]
Faner R, Sibila O, Agusti A, et al. The microbiome in respiratory medicine: current challenges and future perspectives[J]. Eur Respir J, 2017, 49(4): 1602086. DOI: 10.1183/13993003.02086-2016.
[5]
Liu Q, Liu Q, Meng H, et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production[J]. Cell Host Microbe, 202027(1):68.e5-78.e5. DOI: 10.1016/j.chom.2019.11.003.
[6]
Permall DL, Pasha AB, Chen XQ, et al. The lung microbiome in neonates[J]. Turk J Pediatr, 2019, 61(6): 821-830. DOI: 10.24953/turkjped.2019.06.001.
[7]
de Steenhuijsen Piters WAA, Binkowska J, Bogaert D. Early life microbiota and respiratory tract infections[J]. Cell Host Microbe, 2020, 28(2): 223-232. DOI: 10.1016/j.chom.2020.07.004.
[8]
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count[J]. Front Immunol, 2022, 13: 1031924. DOI: 10.3389/fimmu.2022.1031924.
[9]
Gallacher DJ, Kotecha S. Respiratory microbiome of new-born infants[J]. Front Pediatr, 2016, 4: 10. DOI: 10.3389/fped.2016.00010.
[10]
Grier A, McDavid A, Wang B, et al. Neonatal gut and respiratory microbiota: coordinated development through time and space[J]. Microbiome, 2018, 6(1): 193. DOI: 10.1186/s40168-018-0566-5.
[11]
Biesbroek G, Tsivtsivadze E, Sanders EA, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children[J]. Am J Respir Crit Care Med, 2014, 190(11): 1283-1292. DOI: 10.1164/rccm.201407-1240OC.
[12]
Charlson ES, Bittinger K, Chen J, et al. Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts[J]. PLoS One, 2012, 7(9): e42786. DOI: 10.1371/journal.pone.0042786.
[13]
Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease[J]. Expert Rev Respir Med, 2013, 7(3): 245-257. DOI: 10.1586/ers.13.24.
[14]
Lal CV, Travers C, Aghai ZH, et al. The airway microbiome at birth[J]. Sci Rep, 2016, 6: 31023. DOI: 10.1038/srep31023.
[15]
Pattaroni C, Watzenboeck ML, Schneidegger S, et al. Early-life formation of the microbial and immunological environment of the human airways[J]. Cell Host Microbe, 2018, 24(6): 857-865. DOI: 10.1016/j.chom.2018.10.019.
[16]
Thorsen J, Rasmussen MA, Waage J, et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma[J]. Nat Commun, 2019, 10(1): 5001. DOI: 10.1038/s41467-019-12989-7.
[17]
DiGiulio DB, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation[J]. PLoS One, 2008, 3(8): e3056. DOI: 10.1371/journal.pone.0003056.
[18]
Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome[J]. Sci Transl Med, 2014, 6(237): 237r-265r. DOI: 10.1126/scitranslmed.3008599.
[19]
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proc Natl Acad Sci U S A, 2010, 107(26): 11971-11975. DOI: 10.1073/pnas.1002601107.
[20]
Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system[J]. Science, 2016, 352(6285): 539-544. DOI: 10.1126/science.aad9378.
[21]
Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease[J]. Nat Rev Microbiol, 2022: 1-14. DOI: 10.1038/s41579-022-00821-x.
[22]
Dickson RP, Erb-Downward JR, Huffnagle GB. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis[J]. Lancet Respir Med, 2014, 2(3): 238-246. DOI: 10.1016/S2213-2600(14)70028-1.
[23]
Mathieu E, Escribano-Vazquez U, Descamps D, et al. Paradigms of lung microbiota functions in health and disease, particularly, in asthma[J]. Front Physiol, 2018, 9: 1168. DOI: 10.3389/fphys.2018.01168.
[24]
Segal LN, Clemente JC, Tsay JC, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype[J]. Nat Microbiol, 2016, 1: 16031. DOI: 10.1038/nmicrobiol.2016.31.
[25]
Cui L, Morris A, Huang L, et al. The microbiome and the lung[J]. Ann Am Thorac Soc, 201411(Suppl 4): S227-S232. DOI: 10.1513/AnnalsATS.201402-052PL.
[26]
Schmidt A, Belaaouaj A, Bissinger R, et al. Neutrophil elastase-mediated increase in airway temperature during inflammation[J]. J Cyst Fibros, 2014, 13(6): 623-631. DOI: 10.1016/j.jcf.2014.03.004.
[27]
Garzoni C, Brugger SD, Qi W, et al. Microbial communities in the respiratory tract of patients with interstitial lung disease[J]. Thorax, 2013, 68(12): 1150-1156. DOI: 10.1136/thoraxjnl-2012-202917.
[28]
Thibeault C, Suttorp N, Opitz B. The microbiota in pneumonia: from protection to predisposition[J]. Sci Transl Med, 2021, 13(576): eaba0501. DOI: 10.1126/scitranslmed.aba0501.
[29]
Nesbitt H, Burke C, Haghi M. Manipulation of the upper respiratory microbiota to reduce incidence and severity of upper respiratory viral infections: a literature review[J]. Front Microbiol, 2021, 12: 713703. DOI: 10.3389/fmicb.2021.713703.
[30]
Wang J, Li F, Sun R, et al. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages[J]. Nat Commun, 2013, 4: 2106. DOI: 10.1038/ncomms3106.
[31]
Wu BG, Sulaiman I, Tsay JJ, et al. Episodic aspiration with oral commensals induces a MyD88-dependent, pulmonary T-helper cell type 17 response that mitigates susceptibility to Streptococcus pneumoniae[J]. Am J Respir Crit Care Med, 2021, 203(9): 1099-1111. DOI: 10.1164/rccm.202005-1596OC.
[32]
Stankovic M, Veljovic K, Popovic N, et al. Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22 exhibit anti-inflammatory effect by attenuation of nf-kappaB and MAPK signaling in human bronchial epithelial cells[J]. Int J Mol Sci, 2022, 23(10): 5547. DOI: 10.3390/ijms23105547.
[33]
Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes[J]. Nature, 1996, 383(6603): 787-793. DOI: 10.1038/383787a0.
[34]
Saeedi P, Salimian J, Ahmadi A, et al. The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system[J]. Inhal Toxicol, 2015, 27(10): 451-461. DOI: 10.3109/08958378.2015.1070220.
[35]
Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1[J]. Nat Med, 2014, 20(6): 642-647. DOI: 10.1038/nm.3568.
[36]
Yagi K, Huffnagle GB, Lukacs NW, et al. The lung microbiome during health and disease[J]. Int J Mol Sci, 2021, 22(19): 10872. DOI: 10.3390/ijms221910872.
[37]
Merenstein C, Bushman FD, Collman RG. Alterations in the respiratory tract microbiome in COVID-19: current observations and potential significance[J]. Microbiome, 2022, 10(1): 165. DOI: 10.1186/s40168-022-01342-8.
[38]
周丹,石芳,刘瀚旻. "新型"支气管肺发育不良生物标志物的研究现状 [J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(4): 357-362. DOI: 10.3877/cma.j.issn.1673-5250.2019.04.001.
[39]
伏洪玲,刘瀚旻. 支气管肺发育不良及肺动脉高压有关信号通路研究现状 [J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(5): 497-505. DOI: 10.3877/cma.j.issn.1673-5250.2022.05.001.
[40]
Dick S, Friend A, Dynes K, et al. A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years[J]. BMJ Open, 2014, 4(11): e6554. DOI: 10.1136/bmjopen-2014-006554.
[41]
Jackson CM, Kaplan AN, Järvinen KM. Environmental exposures may hold the key; Impact of air pollution, greenness, and rural/farm lifestyle on allergic outcomes[J]. Curr Allergy Asthma Rep, 2023, 23(2): 77-91. DOI:10.1007/s11882-022-01061-y.
[42]
Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma[J]. Nat Med, 2020, 26(11): 1766-1775. DOI: 10.1038/s41591-020-1095-x.
[43]
Losol P, Park HS, Song WJ, et al. Association of upper airway bacterial microbiota and asthma: systematic review[J]. Asia Pac Allergy, 2022, 12(3): e32. DOI: 10.5415/apallergy.2022.12.e32.
[44]
O′Connor JB, Mottlowitz MM, Wagner BD, et al. Divergence of bacterial communities in the lower airways of CF patients in early childhood[J]. PLoS One, 2021, 16(10): e257838. DOI: 10.1371/journal.pone.0257838.
[45]
Frayman KB, Wylie KM, Armstrong DS, et al. Differences in the lower airway microbiota of infants with and without cystic fibrosis[J]. J Cyst Fibros, 2019, 18(5): 646-652. DOI: 10.1016/j.jcf.2018.12.003.
[46]
Narang R, Bakewell K, Peach J, et al. Bacterial distribution in the lungs of children with protracted bacterial bronchitis[J]. PLoS One, 2014, 9(9): e108523. DOI: 10.1371/journal.pone.0108523.
[47]
Cuthbertson L, Craven V, Bingle L, et al. The impact of persistent bacterial bronchitis on the pulmonary microbiome of children[J]. PLoS One, 2017, 12(12): e190075. DOI: 10.1371/journal.pone.0190075.
[1] Quan Wei, Shen Zhang, Huijia Chen, Heng Zou, Lina Hu. Current research progress on correlation between female reproductive tract microbiota and assisted reproductive technology[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(02): 151-155.
[2] Yuting Chen, Ye Yang, Qijun Xie, Xiufeng Ling. Research advances of reproductive tract microorganism abnormality in female infertility-related diseases[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 615-620.
[3] Feihong Zhang, Bin Xia. Research progress on neonatal gut microbiota and pathogenesis of necrotizing enterocolitis[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 523-527.
[4] Jiuhu Yin, Xiaoming Lu, Ke Sun, Zhongquan Yi, Yuanyuan Shen, Yadong Liu. Microbiota characteristics of urine microbiota in patients with diabetic urinary tract infection based on 16S rRNA gene sequencing analysis[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2023, 17(03): 164-172.
[5] Shiyang Yu, Dagang Yang, Yongning Li, Xianqiu Xiong, Futang Li, Rong Wang. Accelerated rehabilitation surgery in obstructive jaundice:metabolic interactions between bile acids and intestinal microbes[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(02): 230-234.
[6] Xiaomei Qiao, Kaili Kong, Jingai Fang, Xiaodong Zhang. Research progress on the relationship between the "gut-skin axis" and the uremic skin lesions[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(05): 291-294.
[7] Na Li, Guozhen Zhu. Progress of research on the roles of gut microbiota and its metabolites in acute kidney injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(04): 215-219.
[8] Yuan Wei, Xizhan Xu, Qingfeng Liang. Advances in ocular microflora of immune ocular surface diseases[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(01): 55-59.
[9] Ruyue Li, Ruiqi Pang, Ningli Wang. Research progress of dyslipidemia in the pathogenesis of primary open angle glaucoma[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(01): 35-39.
[10] Ning Wang, Yanzhe Liu, Ziying Wu, Chao Zeng, Guanghua Lei, Tingting Sha, Yilun Wang. Causal associations of gut Microbiota with phenotype indicators of sarcopenia: A mendelian randomization study[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2023, 09(06): 333-342.
[11] Xiao Qu, Liang Wang, Ping Lu, Bin He, Min Sun. Correlation analysis of inflammatory factors in peripheral blood and characteristics of Gut microbiota with the condition of patients with active Ulcerative colitis[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2023, 13(06): 466-470.
[12] Xiang Liao, Shuang Li, Yao Zeng. Analysis of research trends and hotspots of fecal microbiota transplantation from 2012 to 2021[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2023, 13(02): 93-99.
[13] Guoying Zhu, Li Chen, Ling She, Jie Bai, Yongnian Ding, Fengshang Zhu. Therapeutic reality and dilemma of microecological modulators in patients with non-alcoholic fatty liver disease[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2023, 13(01): 1-4.
[14] Daya Zhang, Shiju Chen, Runxiang Chen, Xiaodong Zhang, Da Li, Feihu Bai. Role of intestinal microecological dysregulation in development of metabolic-associated fatty liver disease[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(07): 828-833.
[15] Zeping Jin, Jing Dong, Yunpeng Liu, Yang Wang. Correlation between microbiota-gut-brain axis and the risk factors of ischemic stroke[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2023, 17(05): 510-517.
Viewed
Full text


Abstract