Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2023, Vol. 19 ›› Issue (01): 31 -37. doi: 10.3877/cma.j.issn.1673-5250.2023.01.005

Forum

Research progress on respiratory system microflora and development characteristics of lung microbiome and homeostasis of lung microflora in early life

Yulian Chen, Hanmin Liu()   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2022-12-07 Revised:2023-01-14 Published:2023-02-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    Regional Innovation and Development Joint Fund Project of National Natural Science Foundation of China(U21A20333)

The composition (type and quantity) of respiratory system microflora in early life has been one of the research hotspots in the field of children′s respiratory in recent years. More and more studies suggest that respiratory tract exposure to bacteria in early life is an important factor in the development of lung immune system, and the composition of respiratory system microflora can affect the pulmonary functions and respiration physiological functions, so as to regulate the body′s susceptibility to respiratory pathogens and external stimuli. Early life is the initial period of exposure to environmental stimuli and microbial colonization, and is also a critical period for lung development. The developmental characteristics of lung microbiome and homeostasis of lung microflora in early life may affect the differentiation and maturation of lung immune cells, and the imbalance of lung microbiome may increase the risk of lung infection. Studies have shown that respiratory system microflora varies with the occurrence of lung disease and is related to the severity of lung disease. Therefore, it is very important to explore the interaction between developmental characteristics of lung microbiome, homeostasis of lung microflora in early life and the host for the study of pathogenesis of lung infection diseases. The author intends to discuss the composition and origin of respiratory system microflora in early life, factors affecting the developmental characteristics of lung microbiome and homeostasis of lung microflora in early life, regulation effects of normal respiratory system microflora on lung immune system, and the abnormal respiratory system microflora and lung infection diseases in early life.

[1]
饶健. 小鼠肺部微生物组发育特征及早期菌群稳态调节抗病毒免疫功能的机制研究[D]. 北京:中国医学科学院·北京协和医学院,2019: 1-2.
[2]
von Mutius E. Intimate crosstalk in lower airways at the beginning of life[J]. Cell Host Microbe, 2018, 24(6): 758-759. DOI: 10.1016/j.chom.2018.11.014.
[3]
Dickson RP, Huffnagle GB. The lung microbiome: new principles for respiratory bacteriology in health and disease[J]. PLoS Pathog, 2015, 11(7): e1004923. DOI: 10.1371/journal.ppat.1004923.
[4]
Faner R, Sibila O, Agusti A, et al. The microbiome in respiratory medicine: current challenges and future perspectives[J]. Eur Respir J, 2017, 49(4): 1602086. DOI: 10.1183/13993003.02086-2016.
[5]
Liu Q, Liu Q, Meng H, et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production[J]. Cell Host Microbe, 202027(1):68.e5-78.e5. DOI: 10.1016/j.chom.2019.11.003.
[6]
Permall DL, Pasha AB, Chen XQ, et al. The lung microbiome in neonates[J]. Turk J Pediatr, 2019, 61(6): 821-830. DOI: 10.24953/turkjped.2019.06.001.
[7]
de Steenhuijsen Piters WAA, Binkowska J, Bogaert D. Early life microbiota and respiratory tract infections[J]. Cell Host Microbe, 2020, 28(2): 223-232. DOI: 10.1016/j.chom.2020.07.004.
[8]
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count[J]. Front Immunol, 2022, 13: 1031924. DOI: 10.3389/fimmu.2022.1031924.
[9]
Gallacher DJ, Kotecha S. Respiratory microbiome of new-born infants[J]. Front Pediatr, 2016, 4: 10. DOI: 10.3389/fped.2016.00010.
[10]
Grier A, McDavid A, Wang B, et al. Neonatal gut and respiratory microbiota: coordinated development through time and space[J]. Microbiome, 2018, 6(1): 193. DOI: 10.1186/s40168-018-0566-5.
[11]
Biesbroek G, Tsivtsivadze E, Sanders EA, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children[J]. Am J Respir Crit Care Med, 2014, 190(11): 1283-1292. DOI: 10.1164/rccm.201407-1240OC.
[12]
Charlson ES, Bittinger K, Chen J, et al. Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts[J]. PLoS One, 2012, 7(9): e42786. DOI: 10.1371/journal.pone.0042786.
[13]
Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease[J]. Expert Rev Respir Med, 2013, 7(3): 245-257. DOI: 10.1586/ers.13.24.
[14]
Lal CV, Travers C, Aghai ZH, et al. The airway microbiome at birth[J]. Sci Rep, 2016, 6: 31023. DOI: 10.1038/srep31023.
[15]
Pattaroni C, Watzenboeck ML, Schneidegger S, et al. Early-life formation of the microbial and immunological environment of the human airways[J]. Cell Host Microbe, 2018, 24(6): 857-865. DOI: 10.1016/j.chom.2018.10.019.
[16]
Thorsen J, Rasmussen MA, Waage J, et al. Infant airway microbiota and topical immune perturbations in the origins of childhood asthma[J]. Nat Commun, 2019, 10(1): 5001. DOI: 10.1038/s41467-019-12989-7.
[17]
DiGiulio DB, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation[J]. PLoS One, 2008, 3(8): e3056. DOI: 10.1371/journal.pone.0003056.
[18]
Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome[J]. Sci Transl Med, 2014, 6(237): 237r-265r. DOI: 10.1126/scitranslmed.3008599.
[19]
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proc Natl Acad Sci U S A, 2010, 107(26): 11971-11975. DOI: 10.1073/pnas.1002601107.
[20]
Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system[J]. Science, 2016, 352(6285): 539-544. DOI: 10.1126/science.aad9378.
[21]
Natalini JG, Singh S, Segal LN. The dynamic lung microbiome in health and disease[J]. Nat Rev Microbiol, 2022: 1-14. DOI: 10.1038/s41579-022-00821-x.
[22]
Dickson RP, Erb-Downward JR, Huffnagle GB. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis[J]. Lancet Respir Med, 2014, 2(3): 238-246. DOI: 10.1016/S2213-2600(14)70028-1.
[23]
Mathieu E, Escribano-Vazquez U, Descamps D, et al. Paradigms of lung microbiota functions in health and disease, particularly, in asthma[J]. Front Physiol, 2018, 9: 1168. DOI: 10.3389/fphys.2018.01168.
[24]
Segal LN, Clemente JC, Tsay JC, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype[J]. Nat Microbiol, 2016, 1: 16031. DOI: 10.1038/nmicrobiol.2016.31.
[25]
Cui L, Morris A, Huang L, et al. The microbiome and the lung[J]. Ann Am Thorac Soc, 201411(Suppl 4): S227-S232. DOI: 10.1513/AnnalsATS.201402-052PL.
[26]
Schmidt A, Belaaouaj A, Bissinger R, et al. Neutrophil elastase-mediated increase in airway temperature during inflammation[J]. J Cyst Fibros, 2014, 13(6): 623-631. DOI: 10.1016/j.jcf.2014.03.004.
[27]
Garzoni C, Brugger SD, Qi W, et al. Microbial communities in the respiratory tract of patients with interstitial lung disease[J]. Thorax, 2013, 68(12): 1150-1156. DOI: 10.1136/thoraxjnl-2012-202917.
[28]
Thibeault C, Suttorp N, Opitz B. The microbiota in pneumonia: from protection to predisposition[J]. Sci Transl Med, 2021, 13(576): eaba0501. DOI: 10.1126/scitranslmed.aba0501.
[29]
Nesbitt H, Burke C, Haghi M. Manipulation of the upper respiratory microbiota to reduce incidence and severity of upper respiratory viral infections: a literature review[J]. Front Microbiol, 2021, 12: 713703. DOI: 10.3389/fmicb.2021.713703.
[30]
Wang J, Li F, Sun R, et al. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages[J]. Nat Commun, 2013, 4: 2106. DOI: 10.1038/ncomms3106.
[31]
Wu BG, Sulaiman I, Tsay JJ, et al. Episodic aspiration with oral commensals induces a MyD88-dependent, pulmonary T-helper cell type 17 response that mitigates susceptibility to Streptococcus pneumoniae[J]. Am J Respir Crit Care Med, 2021, 203(9): 1099-1111. DOI: 10.1164/rccm.202005-1596OC.
[32]
Stankovic M, Veljovic K, Popovic N, et al. Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22 exhibit anti-inflammatory effect by attenuation of nf-kappaB and MAPK signaling in human bronchial epithelial cells[J]. Int J Mol Sci, 2022, 23(10): 5547. DOI: 10.3390/ijms23105547.
[33]
Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes[J]. Nature, 1996, 383(6603): 787-793. DOI: 10.1038/383787a0.
[34]
Saeedi P, Salimian J, Ahmadi A, et al. The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system[J]. Inhal Toxicol, 2015, 27(10): 451-461. DOI: 10.3109/08958378.2015.1070220.
[35]
Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1[J]. Nat Med, 2014, 20(6): 642-647. DOI: 10.1038/nm.3568.
[36]
Yagi K, Huffnagle GB, Lukacs NW, et al. The lung microbiome during health and disease[J]. Int J Mol Sci, 2021, 22(19): 10872. DOI: 10.3390/ijms221910872.
[37]
Merenstein C, Bushman FD, Collman RG. Alterations in the respiratory tract microbiome in COVID-19: current observations and potential significance[J]. Microbiome, 2022, 10(1): 165. DOI: 10.1186/s40168-022-01342-8.
[38]
周丹,石芳,刘瀚旻. "新型"支气管肺发育不良生物标志物的研究现状 [J/OL]. 中华妇幼临床医学杂志(电子版), 2019, 15(4): 357-362. DOI: 10.3877/cma.j.issn.1673-5250.2019.04.001.
[39]
伏洪玲,刘瀚旻. 支气管肺发育不良及肺动脉高压有关信号通路研究现状 [J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(5): 497-505. DOI: 10.3877/cma.j.issn.1673-5250.2022.05.001.
[40]
Dick S, Friend A, Dynes K, et al. A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years[J]. BMJ Open, 2014, 4(11): e6554. DOI: 10.1136/bmjopen-2014-006554.
[41]
Jackson CM, Kaplan AN, Järvinen KM. Environmental exposures may hold the key; Impact of air pollution, greenness, and rural/farm lifestyle on allergic outcomes[J]. Curr Allergy Asthma Rep, 2023, 23(2): 77-91. DOI:10.1007/s11882-022-01061-y.
[42]
Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma[J]. Nat Med, 2020, 26(11): 1766-1775. DOI: 10.1038/s41591-020-1095-x.
[43]
Losol P, Park HS, Song WJ, et al. Association of upper airway bacterial microbiota and asthma: systematic review[J]. Asia Pac Allergy, 2022, 12(3): e32. DOI: 10.5415/apallergy.2022.12.e32.
[44]
O′Connor JB, Mottlowitz MM, Wagner BD, et al. Divergence of bacterial communities in the lower airways of CF patients in early childhood[J]. PLoS One, 2021, 16(10): e257838. DOI: 10.1371/journal.pone.0257838.
[45]
Frayman KB, Wylie KM, Armstrong DS, et al. Differences in the lower airway microbiota of infants with and without cystic fibrosis[J]. J Cyst Fibros, 2019, 18(5): 646-652. DOI: 10.1016/j.jcf.2018.12.003.
[46]
Narang R, Bakewell K, Peach J, et al. Bacterial distribution in the lungs of children with protracted bacterial bronchitis[J]. PLoS One, 2014, 9(9): e108523. DOI: 10.1371/journal.pone.0108523.
[47]
Cuthbertson L, Craven V, Bingle L, et al. The impact of persistent bacterial bronchitis on the pulmonary microbiome of children[J]. PLoS One, 2017, 12(12): e190075. DOI: 10.1371/journal.pone.0190075.
[1] Chun Yi, Dongsheng Yuan, Xuejun Xiong. Relationship of systemic immune-inflammation index with decreased bone mass density and osteoporosis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(05): 609-617.
[2] Jin Yang, Xueke Liu, Yuanyuan Zhang, Jun Jin, Yao Wei. Protective effect of gut microbiota-derived lithocholic acid on sepsis-associated hepatic injury[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2024, 17(04): 265-274.
[3] Meng Wang, Hualin Wang, Jian Wang, Kun Sun. Current research status and prospect on intrauterine diagnosis and treatment of congenital heart disease[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 481-485.
[4] Guirong Hu, Wei Wang, Qiang Cai, Liang Xie, Hanmin Liu. A new choice of nebulizers in aerosol inhalation therapy: vibrating mesh nebulizer[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 636-642.
[5] Daocheng Fang, Chunhua Tang, Yuanyuan Hu. The effect of gut microbiota on the formation of calcium oxalate kidney stones[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(05): 509-513.
[6] Daocheng Fang, Yong Wang, Yuanyuan Hu. Analysis on urinary bacteria profile and drug susceptibility in patients with urinary calculi[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(01): 64-68.
[7] Yuanyuan Yuan, Leqi Yue, Huaxing Zhang, Yan Wu, Quanhai Li. Advances in the distribution in lung tissue and therapeutic mechanisms of mesenchymal stem cells in respiratory system diseases models[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(06): 374-381.
[8] Junnan Wang, Ye Liu, Ruohan Li, Qingsong Ye. The potential of mesenchymal stem cells in regulating the gut-brain axis in the treatment of neurological diseases[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(05): 313-319.
[9] Yidan Cai, Fang Jian, Zhiqiang Zhang, Li Chen, Shian Zhang, Lei Xia, Mei Ruan, Dongliang Li. Impact of transjugular intrahepatic portosystemic shunt on gut microbiota and liver function in patients with cirrhotic portal hypertension[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(05): 285-293.
[10] Yanqiu Song, Guiyan Qi, Shuangshuang Yang, Ping Zhou. Analysis of gut microbiota characteristics in severe acute pancreatitis and evaluation of clinical value of early enteral nutrition combined with probiotics treatment[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2024, 14(05): 442-447.
[11] Xiuling Li, Shaofeng Lian, LiuTao Rong, Dengfeng Li, Yunyu Rao. Clinical study of ribavirin combined with compound lactobacillus acidophilus in the treatment of children with rotavirus enteritis[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2024, 14(04): 369-372.
[12] Lu Bai, Qingxia Li, Yizhuo Feng, Xueqian Liu, Ruoqi Liu, Zhuomin Qu, Lingxia Zhao. Advances in treatment of diabetic kidney disease with butyrate[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(03): 303-308.
[13] Meiju Wei, Ling Pan. Role of gut microbiota-bile acid metabolism axis in chronic kidney disease[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(02): 219-222.
[14] Daya Zhang, Shiju Chen, Runxiang Chen, Xiaodong Zhang, Da Li, Feihu Bai. Role of intestinal microecological dysregulation in development of metabolic-associated fatty liver disease[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(07): 828-833.
[15] Ting Feng, Junzhao Ye. Research progress on fecal microbiota transplantation in the treatment of obesity and metabolic dysfunction-associated steatotic liver disease[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2024, 10(02): 138-144.
Viewed
Full text
9
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 1 0 0 8

  From Others local
  Times 4 5
  Rate 44% 56%

Abstract
143
Just accepted Online first Issue
0 0 143
  From Others local
  Times 82 61
  Rate 57% 43%