Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2021, Vol. 17 ›› Issue (02): 125 -131. doi: 10.3877/cma.j.issn.1673-5250.2021.02.001

Special Issue:

Forum

Hepcidin and premature infants with iron deficiency anemia: a comprehensive review

Sufeng Ruan, Fan Yang()   

  • Received:2020-10-10 Revised:2021-03-09 Published:2021-04-01
  • Corresponding author: Fan Yang
  • Supported by:
    Applied Basic Research Project of Science and Technology Department in Sichuan Province(2018JY0124)

Iron deficiency anemia (IDA) is one of the most important challenges for premature infants, which seriously affects their physical growth, immune function and nervous system development. There is no unified international standard for diagnosis and treatment of premature infants with IDA, as well as the lack of specific indicators for early diagnosis of IDA in premature infants. At present, results of studies have shown that hepcidin detection can specifically reflect changes of iron status in preterm infants at an early stage, and can be used for early diagnosis of IDA in preterm infants with high sensitivity and specificity. It can also provide reference for clinical development of more accurate diagnosis and treatment programs for preterm infants with IDA. However, there are few relevant studies about relationship between hepcidin and iron metabolism in preterm infants and its value in diagnosis and treatment of IDA in preterm infants. This review intends to elaborate on the latest progresses of relationships between hepcidin and IDA in premature infants from aspects of mechanism of hepcidin, effect of iron metabolism in pregnant women on hepcidin of premature infants, significance of hepcidin in diagnosis and treatment of premature infants with IDA, and relationship between hepcidin and iron overload.

图1 影响铁调素表达的主要因素
[1]
Camaschella C. New insights into iron deficiency and iron deficiency anemia[J]. Blood Rev, 2017, 31(4): 225-233. DOI: 10.1093/hmg/ddv061.
[2]
Muleviciene A, Sestel N, Stankeviciene S, et al. Assessment of risk factors for iron deficiency anemia in infants and young children: a case-control study[J]. Breastfeed Med, 2018, 13(7): 493-499. DOI: 10.1089/bfm.2018.0083.
[3]
Ferri C, Procianoy RS, Silveira RC. Prevalence and risk factors for iron-deficiency anemia in very-low-birth-weight preterm infants at 1 year of corrected age[J]. J Trop Pediatr, 2014, 60(1): 53-60. DOI: 10.1093/tropej/fmt077.
[4]
Akkermans MD, Uijterschout L, Abbink M, et al. Predictive factors of iron depletion in late preterm infants at the postnatal age of 6 weeks[J]. Eur J Clin Nutr, 2016, 70(1): 941-946. DOI: 10.1038/ejcn.2016.34.
[5]
Suwannakeeree P, Jangmeonwai P. The prevalence and risk factors of iron deficiency anemia in Thai infants by complete blood count at 9-month-old[J]. J Med Assoc Thai, 2020, 10(9): 891-896. DOI: 10.35755/jmedassocthai.2020.09.10904.
[6]
Fernandez MJ, Ochoa JJ, Dada GOL, et al. Iron deficiency and iron homeostasis in low birth weight preterm infants: a systematic review[J]. Nutrients, 2019, 11(5): 1090-2010. DOI: 10.3390/nu11051090.
[7]
Georgieff MK. Iron assessment to protect the developing brain[J]. Am J Clin Nutr, 2017, 106(6): 1593-1588. DOI: 10.3945/ajcn.117.155846.
[8]
Algarin C, Karunakaran KD, Reyes S, et al. Differences on brain connectivity in adulthood are present in subjects with iron deficiency anemia in infancy[J]. Front Aging Neurosci, 2017, 9: 54. DOI: 10.3389/fnagi.2017.00054.
[9]
Pagani A, Nai A, Silvestri L, et al. Hepcidin and anemia: a tight relationship[J]. Front Physiol, 2019, 10: 1294. DOI: 10.3389/fphys.2019.01294.
[10]
Berglund SK, Chmielewska AM, Domellf M, et al. Hepcidin is a relevant iron status indicator in infancy: results from a randomized trial of early vs. delayed cord clamping[J]. Pediatr Res, 2020, 59: 101318. DOI: 10.1038/s41390-020-1045-9.
[11]
Korlesky C, Kling PJ, Pham DQP, et al. Cord blood erythropoietin and hepcidin reflect lower newborn iron stores due to maternal obesity during pregnancy[J]. Am J Perinatol, 2018, 36(5): 511-516. DOI: 10.1055/s-0038-1669444.
[12]
Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era[J]. Haematologica, 2020,105(2): 260-272. DOI: 10.3324/haematol.2019.232124.
[13]
Chappell M, Rivella S. New potential players in hepcidin regulation[J]. Haematologica, 2019, 104(9): 1691-1693. DOI: 10.3324/haematol.2019.224311.
[14]
Lesbordes-Brion JC, Viatte L, Bennoun M, et al. Targeted disruption of the hepcidin 1 gene results in severe hemochromatosis[J]. Blood, 2006, 108(4): 1402-1405. DOI: 10.1182/blood-2006-02-003376.
[15]
Roy CN, Mak HH, Akpan I, et al. Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation[J]. Blood, 2007, 109(9): 4038-4044. DOI: 10.1182/blood-2006-10-051755.
[16]
Roth MP, Meynard D, Coppin H. Regulators of hepcidin expression[J]. Vitam Horm, 2019, 110: 101-129. DOI: 10.1016/bs.vh.2019.01.005.
[17]
Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin[J]. Adv Nutr, 2017, 8(1): 126-136. DOI: 10.3945/an.116.013961.
[18]
Arezes J, Foy N, Mchugh K, et al. Erythroferrone inhibits the induction of hepcidin by BMP6[J]. Blood, 2018, 132(14): 1473-1477. DOI: 10.1182/blood-2018-06-857995.
[19]
Rishi G, Wallace DF, Subramaniam VN. Hepcidin: regulation of the master iron regulator[J]. Biosci Rep, 2015, 35(3): e00192. DOI: 10.1042/BSR20150014.
[20]
Ganz T. Erythropoietic regulators of iron metabolism[J]. Free Radic Biol Med, 2019, 133: 69-74. DOI: 10.1016/j.freeradbiomed.2018.07.003.
[21]
Harigae H. Iron metabolism and the related diseases[J]. Int J Hematol, 2018, 107(1): 5-6. DOI: 10.1007/s12185-017-2384-0.
[22]
Ru Y, Pressman EK, Guillet R, et al. Umbilical cord hepcidin concentrations are positively associated with the variance in iron status among multiple birth neonates[J]. J Nutr, 2018, 148(2): 1716-1722. DOI: 10.1093/jn/nxy151.
[23]
Bencaiova GA, Vogt DR, Hoesli I. Serum hepcidin and iron status parameters in pregnant women and the association with adverse maternal and fetal outcomes: a study protocol for a prospective cohort study[J]. BMJ Open, 69(11): e032280. DOI: 10.1136/bmjopen-2019-032280.
[24]
Basu S, Kumar N, Srivastava R, et al. Maternal and cord blood hepcidin concentrations in severe iron deficiency anemia[J]. Pediatr Neonatol, 2016, 57(5): 413-419. DOI: 10.1016/j.pedneo.2015.09.012.
[25]
Kim HA, Park SH, Lee EJ. Iron status in small for gestational age and appropriate for gestational age infants at birth[J]. Korean J Pediatr, 2018, 62(3): 102-107. DOI: 10.3345/kjp.2018.06653.
[26]
Rehu M, Punnonen K, Ostland V, et al. Maternal serum hepcidin is low at term and independent of cord blood iron status[J]. Eur J Haematol, 2010, 85(4): 345-352. DOI: 10.1111/j.1600-0609.2010.01479.x.
[27]
Cross JH, Prentice AM, Carla C. Hepcidin, serum iron and transferrin saturation in full term and premature infants during the first month of life: a state-of-the-art review of existing evidence in humans[J]. Curr Dev Nutr, 2020, 4(8): nzaa104. DOI: 10.1093/cdn/nzaa104.
[28]
Ichinomiya K, Maruyama K, Inoue T, et al. Perinatal factors affecting serum hepcidin levels in low-birth-weight infants[J]. Neonatology, 2017, 112(2): 110-116. DOI: 10.1159/000473871.
[29]
Stinson LF, Payne MS. Infection-mediated preterm birth: bacterial origins and avenues for intervention[J]. Aust N Z J Obstet Gynaecol, 2019, 59(6): 781-790. DOI: 10.1111/ajo.13078.
[30]
Armitage AE, Agbla SC, Betts M, et al. Rapid growth is a dominant predictor of hepcidin suppression and declining ferritin in Gambian infants[J]. Haematologica, 2019, 104(8): 1542-1553. DOI: 10.3324/haematol.2018.210146.
[31]
Pasricha SR, Atkinson SH, Armitage AE, et al. Expression of the iron hormone hepcidin distinguishes different types of anemia in African children[J]. Sci Transl Med, 2014, 6(235): 235re3. DOI: 10.1126/scitranslmed.3008249.
[32]
Albaroudi IN, Khodder M, Al Saadi T, et al. Prevalence, diagnosis, and management of iron deficiency and iron deficiency anemia among Syrian children in a major outpatient center in Damascus, Syria[J]. Avicenna J Med, 2018, 8(3): 92-103. DOI: 10.4103/ajm.AJM_169_17.
[33]
Babaei M, Shafiei S, Bijani A, et al. Ability of serum ferritin to diagnose iron deficiency anemia in an elderly cohort[J]. Rev Bras Hematol Hemoter, 2017, 39(3): 223-228. DOI: 10.1016/j.bjhh.2017.02.002.
[34]
Uijterschout L, Domellof M, Berglund S, et al. Serum hepcidin in infants born after 32 to 37 wk of gestational age[J]. Pediatr Res, 2016, 79(4): 608-613. DOI: 10.1038/pr.2015.258.
[35]
Müller KF, Lorenz L, Poets CF, et al. Hepcidin concentrations in serum and urine correlate with iron homeostasis in preterm infants[J]. J Pediatr, 2012, 160(6): 949-953. DOI: 10.1016/j.jpeds.2011.12.030.
[36]
Dewan P, Dixit A, Gomber S, et al. Serum and urinary hepcidin for diagnosing iron-deficiency anemia in under-5 children[J]. J Pediatr Hematol Oncol, 2018, 41(4): 216-220. DOI: 10.1097/MPH.0000000000001320.
[37]
Berglund S, Lonnerdal B, Westrup B, et al. Effects of iron supplementation on serum hepcidin and serum erythropoietin in low-birth-weight infants[J]. Am J Clin Nutr, 2011, 94(6): 1553-1561. DOI: 10.3945/ajcn.111.013938.
[38]
Bregman DB, Morris D, Koch TA, et al. Hepcidin levels predict nonresponsiveness to oral iron therapy in patients with iron deficiency anemia[J]. Am J Hematol, 2013, 88(2): 97-101. DOI: 10.1182/blood.V120.21.484.484.
[39]
Brannon PM, Taylor CL. Iron supplementation during pregnancy and infancy: uncertainties and implications for research and policy[J]. Nutrients, 2017, 9(12): 1327. DOI: 10.3390/nu9121327.
[40]
Najeeb T, Anjum N. Association of cord hepcidin and iron parameters with maternal hepcidin, iron status markers and neonatal morphometrics[J]. Pak J Physiol, 2018, 14(2): 7-10.
[41]
Frazer DM, Wilkins SJ, Darshan D, et al. Ferroportin is essential for iron absorption during suckling, but is hyporesponsive to the regulatory hormone hepcidin[J]. Cell Mol Gastroenterol Hepatol, 2016, 3(3): 410-421. DOI: 10.1016/j.jcmgh.2016.12.002.
[42]
Raffaeli G, Manzoni F, Cortesi V, et al. Iron homeostasis disruption and oxidative stress in preterm newborns[J]. Nutrients, 2020, 12(6): 1554. DOI: 10.3390/nu12061554.
[43]
Treviño-Báez JD, Briones-Lara E, Alamillo-Velázquez J, et al. Multiple red blood cell transfusions and iron overload in very low birthweight infants[J]. Vox Sanguinis, 2017, 112(5): 453-458. DOI: 10.1111/vox.12528.
[44]
Lönnerdal B. Excess iron intake as a factor in growth, infections, and development of infants and young children[J]. Am J Clin Nutr, 2017, 106(6): 1681-1687. DOI: 10.3945/ajcn.117.156042.
[45]
Hare DJ, Cardoso BR, Raven EP, et al. Excessive early-life dietary exposure: a potential source of elevated brain iron and a risk factor for Parkinson′s disease[J]. NPJ Parkinsons Dis, 2017, 3(1): 1-5. DOI: 10.1038/s41531-016-0004-y.
[46]
Wessling-Resnick M. Excess iron: considerations related to development and early growth[J]. Am J Clin Nutr, 2017, 106(6): 1600-1605. DOI: 10.3945/ajcn.117.155879.
[47]
Szudzik M, Starzyński RR, Jończy A, et al. Iron supplementation in suckling piglets: an ostensibly easy therapy of neonatal iron deficiency anemia[J]. Pharmaceuticals, 2018, 11(4): 128. DOI: 10.3390/ph11040128.
[48]
《中华儿科杂志》编辑委员会. 儿童缺铁和缺铁性贫血防治建议[J]. 中国儿童保健杂志,2010, 46(8): 502-504. DOI: 10.3321/j.issn:0578-1310.2008.07.006.
[1] Daihua Yu, Wei Li, Qian Yang, Xude Sun, Changjun Gao, Wei Chai. Improvement effect of recombinant human erythropoietin on cognition disorders in acute brain infarction patients[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2017, 10(02): 87-91.
[2] Fenfang Peng, Xiaoyan Yang, Jing Shi, Dapeng Chen, Ying Xiong. Twin anemia-polycythemia sequence: a case report and literatures review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2019, 15(01): 73-80.
[3] Ling Min, Xi Wang, Qiang Yao. Predictive values of first trimester red blood cell parameters on gestational diabetes mellitus in non-anemic pregnant women[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2017, 13(06): 669-673.
[4] Tiantian Liu, Ming Li, Hanting Zhu, Tao Ni, Yinbo Peng, Yong Fang. Clinical sample validation of iron overload at the wound edge and the effect of iron overload on wound healing in mice[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(06): 475-481.
[5] Branch of Organ Transplantation of Chinese Medical Association, National Kidney Transplantation Quality Control Center. Technical specification for clinical diagnosis and treatment of human parvovirus B19 infection in kidney transplant recipients (2022 edition)[J]. Chinese Journal of Transplantation(Electronic Edition), 2022, 16(04): 193-200.
[6] min Chen, Tianzhong Pan, Zimin Sun. Iron removal therapy for poor implantation after allogeneic hematopoietic stem cell transplantation: a case report[J]. Chinese Journal of Transplantation(Electronic Edition), 2022, 16(03): 168-171.
[7] Yingli Ma. Effect of liraglutide on glycosylated hemoglobin, β cell function and body fat in type 2 diabetic patients with low T3 syndrome[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2017, 07(03): 141-145.
[8] Ling Sun, Luxi Zou, Ruixue Hua, Yu Wu. Relationship between serum hepcidin-25 and survival prognosis in patients undergoing maintenance hemodialysis[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(04): 191-196.
[9] Yan Mei, Quan Hong, Qian Ma, Jie Zhang, Yuansheng Xie, Guangyan Cai, Xiangmei Chen. Renal protective effects of carbamylated erythropoietin in chronic renal failure rats complicated with acute kidney injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2018, 07(03): 122-125.
[10] Yang Liu, Xueli Lai, Zhiyong Guo. Research and treatment progress in iron homeostasis of chronic kidney disease[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2017, 06(02): 83-87.
[11] Yupeng Zhang, Aijun Deng, Yan Sun. Application progress of erythropoietin in the treatment of indirect traumatic optic neuropathy[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(01): 45-49.
[12] Jingjing Lu, Xing Li, Pingping Lou, Jie Zhang, Yan Liu, Yaru. Zhou. The relationship between Serum ferritin and Osteoporosis[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2020, 06(02): 111-116.
[13] Hongbin Mou, Haixia Wang, Changhua Liu, Bo Gao, Rui Chen, Gang Zhou, Yaling Kong. Correlation between serum hepcidin and calcium-phosphorus metabolism indices in continuous ambulatory peritoneal dialysis patients[J]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(05): 273-278.
[14] Ying Pang, Mingting Liang, Jianqun Ma, Yong Yang, Jing Zhang. Protective effects and mechanisms of recombinant human erythropoietin on myocardial ischemia/reperfusion injury in rabbits[J]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2017, 05(01): 1-6.
[15] Limei Zhu, Jingwei Zhang, Jia'nan Chen, Lin An. Efficacy of perioperative erythropoietin combined with sucrose iron in elderly patients with lumbar spinal stenosis[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2023, 10(02): 24-27.
Viewed
Full text


Abstract