Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2018, Vol. 14 ›› Issue (06): 718 -723. doi: 10.3877/cma.j.issn.1673-5250.2018.06.015

Special Issue:

Original Article

Prenatal diagnosis results of advanced maternal age women and limitations of preferred non-invasive prenatal screening to them: a large sample analysis

Hang Su1, Zhiying Liu1, Yi Lai1, Li Qin1, Hongqian Liu1, Xuemei Zhang1, Qian Zhu1, Ting Hu1, Xun Zhang1, Xiaowen Zhao1, Shanling Liu1, He Wang1,()   

  1. 1. Department of Prenatal Diagnosis of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2018-04-28 Revised:2018-09-22 Published:2018-12-01
  • Corresponding author: He Wang
  • About author:
    Corresponding author: Wang He, Email:
  • Supported by:
    National Science and Technology Infrastructure Program(2014BAI06B03)
Objective

Based on the analysis of the cytogenetic prenatal diagnosis results, the values of non-invasive prenatal screening (NIPS) were analyzed in the detection of the advanced maternal age women (≥35 years old) and limitations of preferred to NIPS according to the fetal chromosomal abnormalities.

Methods

From January 2009 to December 2013, a total of 20 751 advanced maternal age women who received prenatal diagnosis in West China Second University Hospital, Sichuan University were selected as research subjects. The results of the fetal cytogenetic prenatal diagnosis by amniocentesis of those 20 751 advanced maternal age women were analyzed retrospectively. The chromosome abnormalities of the fetus were classified and the proportions of all kinds of chromosome abnormalities were calculated. This research was in line with the requirements of World Medical Association Declaration of Helsinki revised in 2013.

Results

① A total of 380 chromosome abnormalities were detected among those 20 751 advanced maternal age women according to the results of the cytogenetic prenatal diagnosis. The total detection rate of chromosome abnormalities in advanced maternal age women was 1.83% (380/20 751), including 173 cases of trisomy 21 (45.53%, 173/380), 51 cases of trisomy 18 (13.42%, 51/380), 9 cases of trisomy 13 (2.37%, 9/380), 78 cases of sex chromosome abnormalities (20.53%, 78/380), 49 carriers of chromosomal abnormality (12.89%, 49/380), 20 cases of other chromosome abnormalities (5.26%, 20/380). If NIPS was used as the preferred prenatal diagnosis method, then the aimed diseases of NIPT detecting were trisomy 21, trisomy 18 and trisomy 13, so the chromosome abnormalities which could be detected out would probably account for 70.39% (233/331) of all chromosomal abnormalities with clinical phenotypes. ②From 2009 to 2013, the detection rates of fetal chromosomal abnormalities were 1.49% (38/2 543), 1.44% (51/3 548), 1.87% (87/4 651), 1.85% (99/5 345), and 2.25% (105/4 664), respectively, and the detection rate of fetal chromosomal abnormalities was increasing year by year.

Conclusion

NIPS as the preferred detection method for screening of fetal chromosomal abnormalities in advanced maternal age women should be cautiously used.

表1 380例胎儿染色体异常分类、检出率及其构成比分析结果[%(n/n′)]
表2 380例染色体异常胎儿的染色体核型及其构成比[例数(%)]
染色体核型 构成比 染色体核型 构成比
21-三体综合征 173(45.53) ? 46,X,inv(X) 1(0.26)
? 47,XX(XY),+21 173(45.53) ? 46,XX,t(1;16)(q10;p10)mat 1(0.26)
18-三体综合征 51(13.42) ? 46,XX,t(1;9)(p35;p11)pat 1(0.26)
? 47,XX(XY),+18 51(13.42) ? 46,XX,t(11;22)(q24;q13) 1(0.26)
13-三体综合征 9(2.37) ? 46,xx,t(12;18)(q21;q12) 1(0.26)
? 47,XX(XY),+13 9(2.37) ? 46,XX,t(2;12)(q11;q11)mat 1(0.26)
性染色体异常 78(20.53) ? 46,XX,t(2;15)(q22;q24),9qh+ 1(0.26)
? 45,X 6(1.58) ? 46,XX,t(4;5)(q28;q23) 1(0.26)
? 45,X,[9]/47,XXX[5]/46,XX[6] 1(0.26) ? 46,XX,t(4;8)(q21;p11) 1(0.26)
? 45,X,inv9 1(0.26) ? 46,XX,t(5;15)(q23;q25) 1(0.26)
? 45,X[4]/46,XX[97] 1(0.26) ? 46,XX,t(6;19)(p11;q11)mat 1(0.26)
? 45,X[1]/46,XXY[1]/46,XY[34] 1(0.26) ? 46,XX,t(8;10)(q23;p25)pat 1(0.26)
? 45,X[3]/46,X,i(X)(q10)[21] 1(0.26) ? 46,XX,t(8;22)(q24.2;q12)mat 1(0.26)
? 45,X[3]/46,XX[17] 1(0.26) ? 46,XX,t(9;10)(q21;p12) 1(0.26)
? 45,X[3]/46,XY[27] 1(0.26) ? 46,XX,t(9;14)(q32;q31)mat 1(0.26)
? 45,X[4]/46,XX[32] 1(0.26) ? 46,XY,der(10)(q?) 1(0.26)
? 45,X[4]/46,XY[28] 1(0.26) ? 46,XY,t(1;2)(p31;q21) 1(0.26)
? 45,X[5]/46,XX[30] 1(0.26) ? 46,XY,t(1;4)(q31;p12) 1(0.26)
? 45,X[7]/46,X,i(X)(q10)[13] 1(0.26) ? 46,XY,t(10;13)(q11;q33) 1(0.26)
? 45,X[7]/46,XX[27] 1(0.26) ? 46,XY,t(12;16)(p12;p12)pat 1(0.26)
? 45,X[7]/46,XY[31] 1(0.26) ? 46,XY,t(19;20)(p13;q22)pat 1(0.26)
? 45,X[9]/46,XX[11] 1(0.26) ? 46,XY,t(2;11)[5]/46,XY[27] 1(0.26)
? 46,X,del(X)(p21→ter) 1(0.26) ? 46,XY,t(2;15)(p14;q24) mat 1(0.26)
? 46,X,i(X) 1(0.26) ? 46,XY,t(2;18)(q34;p11) 1(0.26)
? 46,X,i(Xq) 1(0.26) ? 46,XY,t(4:18)(q21;q23)mat 1(0.26)
? 46,XX[5]/46,XY,[25] 1(0.26) ? 46,XY,t(5;7)(q22;p22) 1(0.26)
? 46,XY[27]/46,XX[14] 1(0.26) ? 46,XY,t(6;13)(q14;q33) 1(0.26)
? 47,XXX[5]/46,XX[15] 1(0.26) ? 46,XY,t(8;12)(q23;q13)[11]/46,XY[19] 1(0.26)
? 47,XXX 12(3.16) ? 46,XY,t(8;15)(p23;q22) 1(0.26)
? 47,XXX[12]/45,X[5] 1(0.26) ? 46,XY,t(3;15)(q22;q22) 1(0.26)
? 47,XXX[5]/46,XX[18] 1(0.26) ? 46,XX,t(2;4)(q21;q32) 1(0.26)
? 47,XXY 25(6.58) ? 46,XX,t(6;9)(p10′p10) 1(0.26)
? 47,XXY[10]/46,XY[29] 1(0.26) ? 46,XY,t(X;3)(q21;q21)mat 1(0.26)
? 47,XXY[19]/46,XY[14] 1(0.26) 其他染色体异常 20(5.26)
? 47,XYY 6(1.58) ? 46,XX,del(18)(q21) 1(0.26)
? 47,XYY,inv9 1(0.26) ? 46,XX,der(17) 1(0.26)
? 47,XYY[6]/46,XY[14] 1(0.26) ? 46,XX,der(18)(p?) 1(0.26)
? 47,XYY[14]/46,XY[13] 1(0.26) ? 46,XX,der(4)(p?) 1(0.26)
? 47,XYY[3]/46,XY[35] 1(0.26) ? 46,XY,del(11)(q?) 1(0.26)
? 47,XYY[4]/46,XY[35] 1(0.26) ? 46,XY,del(21)(qter→p10) 2(0.53)
染色体异常携带者 49(12.89) ? 47,XY,+22[3]/46,XY[83] 1(0.26)
? 45,XX,rob(13;14)(q10;q10) 3(0.79) ? 47,XX,+16[6]/46,XX[20] 1(0.26)
? 45,XX,rob(13;14)(q10;q10)pat 1(0.26) ? 47,XX,+4[2]/46,XX[28] 1(0.26)
? 45,XX,rob(13;21)(q10;q10) 1(0.26) ? 47,XX,+7[3]/46,XY[3] 1(0.26)
? 45,XX,rob(14;22)(q10;q10) 2(0.53) ? 47,XX,+9 1(0.26)
? 45,XX,rob(15;22)(q10;q10)[23]/46,XX[7] 1(0.26) ? 47,XY,+2[2]/46,XY[33] 1(0.26)
? 45,XX,rob(15;22)(q10;q10)pat 1(0.26) ? 47,XY,+2[2]/46,XY[36] 1(0.26)
? 45,XY,rob(13;14)(q10;q10)mat 2(0.53) ? 47,XY,+20[13]/46,XY[17] 1(0.26)
? 45,XY,rob(13;14)(q10;q10) 1(0.26) ? 47,XY,+20[5]/46,XY[46] 1(0.26)
? 45,XY,rob(14;21)(q10;q10)pat 1(0.26) ? 47,XY,+4[3]/46,XY[32] 1(0.26)
? 45,XY,rob(14;21)(q10;q10) 1(0.26) ? 47,XY,+M[8]/46,XY[2] 1(0.26)
? 45,XY,rob(14;22)(q10;q10) 1(0.26) ? 47,XY,+mar 1(0.26)
? 45,XY,rob(13;14)(q10;q10) 1(0.26) ? 47,XY,+mar[4]/46,XY[10] 1(0.26)
图1 2009-2013年20 751例高龄孕妇中,不同年份胎儿染色体异常检出率折线图
[1]
郑静,卓越,孙大康,等. 不同年龄段孕妇无创DNA产前检测结果对比分析[J].中国妇幼保健,2015,30(36):6538-6540.
[2]
季修庆,蒋涛,林颖,等. 无创产前检测在高龄孕妇产前筛查唐氏综合征中的应用[J].临床检验杂志,2015, 33(5):325-327.
[3]
国家卫生计生委办公厅. 国家卫生计生委办公厅关于规范有序开展孕妇外周血胎儿游离DNA产前筛查与诊断工作的通知(国卫办妇幼发[2016] 45号)[EB/OL]. (2016-10-27) [2018-08-10].

URL    
[4]
Kuliev A, Verlinsky Y. The role of preimplantation genetic diagnosis in women of advanced reproductive age[J]. Curr Opin Obstet Gynecol, 2003, 15(3): 233-238.
[5]
Kong CW, Leung TN, Lung TY, et al. Risk factors for procedure related fetal losses after midtrimester genetic amniocentesis[J]. Prenat Diagn, 2006, 26(10): 925-930.
[6]
Tesng JJ, Chou MM, Lo FC, et al. Detection of chromosome aberrations in the second trimester using genetic amniocentesis: experience during 1995-2004[J]. Taiwan J Obstet Gynecol, 2006, 45(1): 39-41.
[7]
石庆华,许波,杨庆岭,等. 非整倍体和人类生殖健康[J]. 中国科学技术大学学报,2008, 38(8): 883-889.
[8]
Liang X, Ma J, Schatten H, et al. Epigenetic changes associated with oocyte aging[J]. Sci China Life Sci, 2012, 55(8): 670-676.
[9]
Alexander E, Kelly S, Kerzin-Storrar L. Non-invasive prenatal testing: UK genetic counselors′ experiences and perspectives[J].J Genet Couns, 2015, 24(2): 300-311.
[10]
Dan S, Wang W, Ren JH, et al. Clinical application of massively parallel sequencing-based prenatal noninvasive fetal trisomy test for trisomies 21 and 18 in 11 105 pregnancies with mixed risk factors[J]. Prenat Diagn, 2012, 32(13): 1225-1232.
[11]
Palomaki GE, Kloza EM, Lambert-Messerlian GM, et al. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study[J]. Genet Med, 2011, 13(11): 913-920.
[12]
Chiu RW, Akolekar R, Zheng YW, et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study[J]. BMJ, 2011, 342(7790): c7401.
[13]
Ehrich M, Deciu C, Zwiefelhofer T, et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting[J]. Am J Obstet Gynecol, 2011, 204(3): 205.e1-205.e11.
[14]
Sehnert AJ, Rhees B, Comstock D, et al. Optimal detection of fetal chromosomal abnormalities by massively parallel DNA sequencing of cell-free fetal DNA from maternal blood[J]. Chin Chem, 2011, 57(7): 1042-1049.
[15]
Sparks AB, Struble CA, Wang ET, et al. Noninvasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18[J]. Am J Obstet Gynecol, 2012, 206(4): 319. e1-319. e9.
[16]
Norton ME, Brar H, Weiss J, et al. Non-invasive chromosomal evaluation (NICE) study: results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18[J]. Am J Obstet Gynecol, 2012, 207(2): 137. e1-137. e8.
[17]
Bianchi DW, Platt LD, Coldberg JD, et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing[J]. Obstet Gynecol, 2012, 119(5): 890-901.
[18]
Ashoor G, Syngelaki A, Wagner M, et al. Chromosome-selective sequencing of maternal plasma cell–free DNA for first-trimester detection of trisomy 21 and trisomy 18[J]. Am J Obstet Gynecol, 2012, 206(4): 322. e1-322. e5.
[19]
Gregg AR, Gross SJ, Best RG, et al. ACMG statement on noninvasive prenatal screening for fetal aneuploidy[J].Genet Med, 2013, 15(5): 395-398.
[20]
Canick JA, Palomaki GE, Kloza EM, et al. The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies[J]. Prenat Diagn, 2013, 33(7): 667-674.
[21]
Vora NL, Johnson KL, Basu S, et al. A multifactorial relationship exists between total circulating cell-free DNA levels and maternal BMI[J]. Prenat Diagn, 2012, 32(9): 912-914.
[22]
Wang E, Batey A, Struble C, et al. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma[J]. Prenat Diagn, 2013, 33(7): 662-666.
[23]
Ashoor G, Poon L, Syngelaki A, et al. Fetal fraction in maternal plasma cell-free DNA at 11-13 weeks′ gestation: effect of maternal and fetal factors[J]. Fetal Diagn Ther, 2012, 31(4): 237-243.
[24]
Bianchi DW, Prosen T, Platt LD, et al. Massively parallel sequencing of maternal plasma DNA in 113 cases of fetal nuchal cystic hygroma[J]. Obstet Gunecol, 2013, 121(5): 1057-1062.
[25]
Mazloom AR, Dzakula Z, Oeth P, et al. Noninvasive prenatal detection of sex chromosomal aneuploidies by sequencing circulating cell-free DNA from maternal plasma[J]. Prenat Diagn, 2013, 33(6): 591-597.
[1] Fei Dai, Bowen Zhao, Mei Pan, Xiaohui Peng, Ran Chen, Yuanshi Tian, Ming Di. Value of multiple fetal echocardiographic quantitative parameters in assessing heart structure and function in fetuses with coarctation of the aorta[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(10): 950-958.
[2] Zusheng Du, Bowen Zhao, Zhen Zhang, Mei Pan, Xiaohui Peng, Ran Chen, Yankai Mao. Impact of gestational age and apex orientation on left atrial strain assessed by two-dimensional speckle tracking imaging in normal fetuses during the second and third trimesters[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(09): 843-851.
[3] Shangdi Zhang, Bowen Zhao, Mei Pan, Xiaohui Peng, Ran Chen, Yankai Mao, Yang Chen, Hua Yuan, Yan Chen. Value of quantitative fetal atrial size parameters in assessing cardiac malformations in fetuses with atrial disproportion in middle and late trimesters[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(08): 785-793.
[4] Lili Gu, Fan Jiang. Survey and analysis of quality of screening prenatal ultrasound images in Anhui Province[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(07): 671-674.
[5] Qiulian Wang, Ying Zhang, Chunmin Li, Shuming Xu, Yuqi Zhang. Prenatal ultrasound diagnosis of fetal aortic arch obstruction with complex intracardiac structural malformations: causes of missed diangosis and misdiagnosis[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(07): 718-725.
[6] Qing Zeng, Huaxuan Wen, Ying Yuan, Yimei Liao, Yue Qin, Dandan Luo, Meiling Liang, Shengli Li. Sylvian fissure plateau angle: a new parameter to evaluate fetal sylvian fissure by transabdominal two-dimensional ultrasound[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(05): 454-459.
[7] Gang Luo, Silin Pan, Lingyu Sun, Zhixin Li, Taotao Chen, Sibo Qiao, Shanchen Pang. Classification of right ventricular hypoplasia in fetuses diagnosed with pulmonary atresia with an intact ventricular septum or critical pulmonary stenosis via a new semantic parsing network model[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(04): 377-383.
[8] Zhen Zhang, Bowen Zhao, Mei Pan, Xiaohui Peng, Ran Chen, Yuanshi Tian, Yang Chen. Evaluation of normal fetal right atrial function in the second and third trimester of pregancy by two-dimensional speckle tracking echocardiography: a preliminary study[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(04): 384-390.
[9] Qing Zeng, Huaxuan Wen, Ying Yuan, Yimei Liao, Yue Qin, Dandan Luo, Meiling Liang, Guiyan Peng, Yi Lin, Ying Tan, Xin Wen, Wenlan Huang, Shengli Li. Clinical application of five axial planes of the fetal brain[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(03): 243-250.
[10] Feng Xie, Yuhan Wu, Sheng Zhao, Xiaohong Yang, Yubo Wang, Zhen Shi, Jianhua Fan, Min Zhang. Combined use of prenatal ultrasound and magnetic resonance imaging in diagnosis of fetal dural sinus malformation[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(03): 275-280.
[11] Yan Xu, Tong Ru, Mingming Zheng, Yan Gu, Xiangyu Zhu, Chenchen Yan, Ling Chen, Chenyan Dai. Prenatal ultrasound and MRI characteristics and genetic analysis of Miller-Dieker syndrome[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(03): 281-287.
[12] Jingyu Qian, Mingming Zheng. Interpretation of the Italian guidelines on non-invasive and invasive prenatal diagnosis:executive summary of recommendations for practice the Italian Society for Obstetrics and Gynecology(SIGO)[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 486-492.
[13] Shaomin Wu, Shihao Zhang, Bingguang Liu, Chan Li, Jiamin Yin, Changye Zheng, Suran Huang. Fetal giant arachnoid cysts:a case report and literature review[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(04): 390-397.
[14] Yingying Shen, Wei Li, Fei Li, Cuixing Yi, Simin Yuan. Differential diagnosis of chromosomal structural rearrangement in a child with hypospadias by multiple genetics techniques[J]. Chinese Journal of Diagnostics(Electronic Edition), 2024, 12(02): 107-111.
[15] Yan Chen, Zonghui Feng, Shumin Jiang, Min Li, Fengmei Yi, Ying Tan. Analysis of TSC2 gene variation in a tuberous sclerosis complex family and prenatal diagnosis[J]. Chinese Journal of Diagnostics(Electronic Edition), 2024, 12(02): 112-115.
Viewed
Full text


Abstract