[1] |
Vasiljevic B, Maglajlic-Djukic S, Gojnic M, et al. New insights into the pathogenesis of perinatal hypoxic-ischemic brain injury[J]. Pediatr Int, 2011, 53(4): 454-462.
|
[2] |
Higgins RD, Raju T, Edwards AD, et al. Hypothermia and other treatment options for neonatal encephalopathy: an executive summary of the Eunice Kennedy Shriver NICHD workshop[J]. J Pediatr, 2011, 159(5): 851-858.
|
[3] |
Rocha-Ferreira E, Hristova M. Antimicrobial peptides and complement in neonatal hypoxia-ischemia induced brain damage[J]. Front Immunol, 2015, 6: 56.
|
[4] |
Hudson N, Powner MB, Sarker MH, et al. Differential apicobasal VEGF signaling at vascular blood-neural barriers[J]. Dev Cell, 2014, 30(5): 541-552.
|
[5] |
罗美蓉,王正伟,安志星. 人血管内皮生长因子研究进展[J]. 中国老年学杂志,2012, 32(17): 3835-3837.
|
[6] |
Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-induced factor 1[J]. Mol Cell Biol, 1996, 16(9): 4604-4613.
|
[7] |
Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain[J]. Brain, 2002, 125(Pt 11): 2549-2557.
|
[8] |
黄越芳,庄思齐,陈东平, 等. 新生大鼠缺氧缺血性脑病模型脑组织新生血管形成及调控因素[J]. 中华儿科杂志,2004, 42(3): 210-214.
|
[9] |
Zan KLK, Wu H, Jiang J, et al. Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: correlations with angiogenesis and cerebral edema[J]. Neurochem Int, 2011, 58(8): 872-879.
|
[10] |
Ulyatt C, Walker J, Ponnambalam S. Hypoxia differentially regulates VEGFR1 and VEGFR2 levels and alters intracellular signaling and cell migration in endothelial cells[J]. Biochem Biophys Res Commun, 2011, 404(3): 774-779.
|
[11] |
Ogunshola OO, Stewart WB, Mihalcik V, et al. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain[J]. Develop Brain Res, 2000, 119(1): 139-153.
|
[12] |
Li X, Kumar A, Zhang F, et al. Complicated life, complicated VEGF-B[J]. Trends Mol Med, 2012, 18(2): 119-127.
|
[13] |
Keiichi Park, Hideki Amano, Yoshiya Ito, et al. Vascular endothelial growth factor receptor-1 (VEGFR-1) signaling enhances angiogenesis in a surgical sponge model[J]. Biomed Pharmacother, 2016, 78: 140-149.
|
[14] |
Dzietko M, Derugin N, Wendland MF, et al. Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke[J]. Transl Stroke Res, 2013, 4(2): 189-200.
|
[15] |
Bozoyan L, Khlghatyan J, Saghatelyan A. Astrocytes control the development of the migration-promoting vasculature scaffold in the postnatal brain via VEGF signaling[J]. J Neurosci, 2012, 32(5): 1687-1704.
|
[16] |
Guilfoyle MR, Carpenter KL, Helmy A, et al. Matrix metalloproteinase expression in contusional traumatic brain injury: a paired microdialysis study[J]. J Neurotrauma, 2015, 32(20): 1553-1559.
|
[17] |
Greene C, Campbell M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules[J]. Tissue Barriers, 2016, 4(1): e1138017.
|
[18] |
Li X, Bai R, Zhang J, et al. Effect of progesterone intervention on the dynamic changes of AQP-4 in hypoxic-ischaemic brain damage[J]. Int J Clin Exp Med, 2015, 8(10):18831-18836.
|
[19] |
Zehendner CM, Librizzi L, Hedrich J, et al. Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption[J]. PLoS One, 2013, 8(12): e82823.
|
[20] |
Yeh WL, Lu DY, Lin CJ, et al. Inhibition of hypoxia-induced increase of blood-brain barrier permeability by YC-1 through the antagonism of HIF-1alpha accumulation and VEGF expression[J]. Mol Pharmacol, 2007, 72(2): 440-449.
|
[21] |
Kaya D, Gursoy-Ozdemir Y, Yemisci M, et al. VEGF protects brain against focal ischemia without increasing blood-brain permeability when administered intracerebroventricularly[J]. J Cereb Blood Flow Metab, 2005, 25(9): 1111-1118.
|
[22] |
Feng Y, Rhodes PG, Bhatt AJ. Neuroprotective effects of vascular endothelial growth factor following hypoxic ischemic brain injury in neonatal rats[J]. Pediatr Res, 2008, 64(4): 370-374.
|
[23] |
Moretti R, Pansiot J, Bettati D, et al. Blood-brain barrier dysfunction in disorders of the developing brain[J]. Front Neurosci, 2015, 9: 40.
|
[24] |
Engelhardt S, Al-Ahmad AJ, Gassmann M, et al. Hypoxia selectively disrupts brain microvascular endothelial tight junction complexes through a hypoxia-inducible factor-1 (HIF-1) dependent mechanism[J]. J Cell Physiol, 2014, 229(8): 1096-1105.
|
[25] |
Al-Ahmad AJ, Gassmann M, Ogunshola OO. Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation[J]. J Cell Physiol, 2009, 218(3): 612-622.
|
[26] |
Bauer AT, Burgers HF, Rabie T, et al. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement[J]. J Cerebral Blood Flow Metab, 2010, 30(4): 837-848.
|
[27] |
Hayashi T, Abe K, Suzuk H, et al.Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats[J]. Stroke, 1997, 28(10): 2039-2044.
|
[28] |
Yan JQ, Zhou B, Taheri S, et al. Differential effects of HIF-1 inhibition by YC-1 on the overall outcome and blood-brain barrier damage in a rat model of ischemic stroke[J]. PLoS One, 2011, 6(11): e27798.
|
[29] |
Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation[J]. J Neuroimmune Pharmacol, 2014, 9(2): 142-160.
|
[30] |
Min JK, Lee YM, Kim JH, et al. Hepatocyte growth factor suppresses vascular endothelial growth factor-induced expression of endothelial ICAM-1 and VCAM-1 by inhibiting the nuclear factor-kappaB pathway[J]. Circ Res, 2005, 96(3): 300-307.
|
[31] |
Wu KW, Yang P, Li SS, et al. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway[J]. Neuroscience, 2015, 298: 94-101.
|
[32] |
Feng Y, Rhodes PG, Bhatt AJ. Hypoxic preconditioning provides neuroprotection and increases vascular endothelial growth factor A, preserves the phosphorylation of Akt-Ser-473 and diminishes the increase in caspase-3 activity in neonatal rat hypoxic-ischemic model[J]. Brain Res, 2010, 1325: 1-9.
|
[33] |
Feng Y, Rhodes PG, Bhatt AJ. Neuroprotective effects of vascular endothelial growth factor following hypoxic ischemic brain injury in neonatal rats[J]. Pediatr Res, 2008, 64(4): 370-374.
|
[34] |
Trollmann R, Richter M, Jung S, et al. Pharmacologic stabilization of hypoxia-inducible transcription factors protects developing mouse brain from hypoxia-induced apoptotic cell death[J]. Neuroscience, 2014, 278: 327-342.
|
[35] |
Wittko IM, Schänzer A, Kuzmichev A, et al. VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo[J]. J Neurosci, 2009, 29(27): 8704-8714.
|
[36] |
Sun Y, Jin K, Childs JT, et al. Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: evidence from knockout mice and growth factor administration[J]. Dev Biol, 2006, 289(2): 329-335.
|
[37] |
黄惠鸿,张素平,凌莉, 等. 脑微血管内皮细胞通过分泌血管内皮生长因子促进神经干细胞增殖的研究[J]. 实用医学杂志,2013, 29(20): 3295-3298.
|
[38] |
Ara J, Fekete S, Frank M, et al. Hypoxic-preconditioning induces neuroprotection against hypoxia-ischemia in newborn piglet brain[J]. Neurobiol Dis, 2011, 43(2): 473-485.
|
[39] |
韦可聪,朱云中,梁韡斌, 等. 低氧预处理激活神经元细胞JAK/STAT并促进血管内皮生长因子受体-2的表达[J]. 中国神经免疫学和神经病学杂志,2015, 22(1): 40-45.
|
[40] |
Zhang Y, Tong Y, Gao MM, et al. Expression, purification and characterization of a vascular endothelial growth factor fusion protein[J]. Biotechnol Lett, 2016, 38(7): 1115-1120.
|
[41] |
Feng Y, Rhodes PG, Bhatt AJ. Dexamethasone pre-treatment protects brain against hypoxic-ischemic injury partially through up-regulation of vascular endothelial growth factor A in neonatal rats[J]. Neuroscience, 2011, 179: 223-232.
|
[42] |
Yang JP, Liu HJ, Wang ZL, et al. The dose-effectiveness of intranasal VEGF in treatment of experimental stroke[J]. Neurosci Lett, 2009, 461(3): 212-216.
|
[43] |
De Rosa R, Garcia AA, Braschi C, et al. Intranasal administration of nerve growth factor(NGF) rescues recognition memory deficits in AD11 anti-NGF transegenic mice[J]. Proc Natl Acad Sci USA, 2005, 102(10): 3811-3816.
|