切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (02) : 139 -144. doi: 10.3877/cma.j.issn.1673-5250.2022.02.003

专题论坛

基因拷贝数变异在宫颈癌的研究现状
雒海瑕, 王伟, 郝敏()   
  1. 山西医科大学第二医院妇产科,太原 030001
  • 收稿日期:2021-10-30 修回日期:2022-02-27 出版日期:2022-04-01
  • 通信作者: 郝敏

Current research status of gene copy number variation in cervical cancer

Haixia Luo, Wei Wang, Min Hao()   

  1. Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2021-10-30 Revised:2022-02-27 Published:2022-04-01
  • Corresponding author: Min Hao
  • Supported by:
    National Natural Science Foundation of China(81972452); Shanxi Provincial Key Research and Development Program(201903D321152, 201803D31121); Scientific Research Project of Health and Family Planning Commission of Shanxi Province(2018GW04)
引用本文:

雒海瑕, 王伟, 郝敏. 基因拷贝数变异在宫颈癌的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 139-144.

Haixia Luo, Wei Wang, Min Hao. Current research status of gene copy number variation in cervical cancer[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(02): 139-144.

宫颈癌是女性生殖系统最常见恶性肿瘤,是由宿主遗传因素与环境因素相互作用的结果,严重威胁女性生命健康。高危人乳头瘤病毒(HPV)持续感染是宫颈癌的主要致病因素,然而单纯高危HPV感染不足以致癌,宿主遗传特性改变,才能导致宫颈癌的发生。拷贝数变异(CNV)是基因组结构变异,导致基因拷贝数异常的形式之一,包括基因扩增和缺失等。基因CNV可广泛影响致癌基因及抑癌基因表达,从而导致下游信号通路激活与失活,在宫颈癌发生、发展、防治及预后评价中具有至关重要的作用。笔者拟就与宫颈癌密切相关的常见基因CNV的研究现状进行阐述。

Cervical cancer is the most common malignant tumor of female reproductive system, and it is the result of interaction between host genetic factors and environmental factors, which seriously threats women′s life and health. High-risk human papilloma viruses (HPV) continuous infection are necessary but not sufficient to provoke cervical cancer initiation, additional oncovirus infection, and (or) host genetic changes are required to drive neoplastic transformation and consequently lead to tumor formation. Copy number variations (CNV) refer to a form of genomic structural variation that results in abnormal gene copy numbers, including gene amplification and deletion. Gene CNV is an important influential factor for expression of both oncogenes and anti-oncogenes, affecting activation and inactivation of downstream signaling pathways and participating in all aspects of initiation, development, prevention, treatment and prognosis of cervical cancer. The author intends to expound on the research status of common gene CNV associated with cervical cancer.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
Wang Z, Wang W, Zhao W, et al. Folate inhibits miR-27a-3p expression during cervical carcinoma progression and oncogenic activity in human cervical cancer cells[J]. Biomed Pharmacother, 2020, 122: 109654. DOI: 10.1016/j.biopha.2019.109654.
[3]
Rodrigues C, Joy LR, Sachithanandan SP, et al. Notch signalling in cervical cancer[J]. Exp Cell Res, 2019, 385(2): 111682. DOI: 10.1016/j.yexcr.2019.111682.
[4]
Tilborghs S, Corthouts J, Verhoeven Y, et al. The role of nuclear factor-kappa B signaling in human cervical cancer[J]. Crit Rev Oncol Hematol, 2017, 120: 141-150. DOI: 10.1016/j.critrevonc.2017.11.001.
[5]
Brezina S, Feigl M, Gumpenberger T, et al. Genome-wide association study of germline copy number variations reveals an association with prostate cancer aggressiveness[J]. Mutagenesis, 2020, 35(3): 283-290. DOI: 10.1093/mutage/geaa010.
[6]
Liu H, Gu X, Wang G, et al. Copy number variations primed lncRNAs deregulation contribute to poor prognosis in colorectal cancer[J]. Aging (Albany NY), 2019, 11(16): 6089-6108. DOI: 10.18632/aging.102168.
[7]
Wang K, Yu X, Jiang H, et al. Genome-wide expression profiling-based copy number variations and colorectal cancer risk in Chinese[J]. Mol Carcinog, 2019, 58(7): 1324-1333. DOI: 10.1002/mc.23015.
[8]
Burk RD, Chen Z, Saller C, et al. Integrated genomic and molecular characterization of cervical cancer[J]. Nature, 2017, 543(7645): 378-384. DOI: 10.1038/nature21386.
[9]
Zhong Q, Lu M, Yuan W, et al. Eight-lncRNA signature of cervical cancer were identified by integrating DNA methylation, copy number variation and transcriptome data[J]. J Transl Med, 2021, 19(1): 58. DOI: 10.1186/s12967-021-02705-9.
[10]
Huang J, Qian Z, Gong Y, et al. Comprehensive genomic variation profiling of cervical intraepithelial neoplasia and cervical cancer identifies potential targets for cervical cancer early warning[J]. J Med Genet, 2019, 56(3): 186-194. DOI: 10.1136/jmedgenet-2018-105745.
[11]
Zammataro L, Lopez S, Bellone S, et al. Whole-exome sequencing of cervical carcinomas identifies activating ERBB2 and PIK3CA mutations as targets for combination therapy[J]. Proc Natl Acad Sci, 2019, 116(45): 22730-22736. DOI: 10.1073/pnas.1911385116.
[12]
Tian R, Cui Z, He D, et al. Risk stratification of cervical lesions using capture sequencing and machine learning method based on HPV and human integrated genomic profiles[J]. Carcinogenesis, 2019, 40(10): 1220-1228. DOI: 10.1093/carcin/bgz094.
[13]
Litwin TR, Clarke MA, Dean M, et al. Somatic host cell alterations in HPV carcinogenesis[J]. Viruses, 2017, 9(8): 206. DOI: 10.3390/v9080206.
[14]
Joharinia N, Farhadi A, Hosseini SY, et al. Association of HPV16 and 18 genomic copies with histological grades of cervical lesions[J]. Virusdisease, 2019, 30(3): 387-393. DOI: 10.1007/s13337-019-00545-2.
[15]
Ji W, Lou W, Hong Z, et al. Genomic amplification of HPV, h-TERC and c-MYC in liquid-based cytological specimens for screening of cervical intraepithelial neoplasia and cancer[J]. Oncol Lett, 2019, 17(2): 2099-2106. DOI: 10.3892/ol.2018.9825.
[14]
Loharamtaweethong K, Supakatitham C, Vinyuvat S, et al. Prognostic significance of PD-L1 protein expression and copy number gains in locally advanced cervical cancer[J]. Asian Pac J Allergy Immunol, 2021, 39(4): 309-318. DOI: 10.12932/AP-120419-0538.
[15]
Wright TC, Compagno J, Romano P, et al. Amplification of the 3q chromosomal region as a specific marker in cervical cancer[J]. Am J Obstet Gynecol, 2015, 213(1): 51.e51-51.e58. DOI: 10.1016/j.ajog.2015.02.001.
[16]
Koeneman MM, Ovestad IT, Janssen EAM, et al. Gain of chromosomal region 3q26 as a prognostic biomarker for high-grade cervical intraepithelial neoplasia: literature overview and pilot study[J]. Pathol Oncol Res, 2019, 25(2): 549-557. DOI: 10.1007/s12253-018-0480-y.
[17]
Liu Y, Fan P, Yang Y, et al. Human papillomavirus and human telomerase RNA component gene in cervical cancer progression[J]. Sci Rep, 2019, 9(1): 15926. DOI: 10.1038/s41598-019-52195-5.
[18]
Yang H, Zhang H, Zhong Y, et al. Concomitant underexpression of TGFBR2 and overexpression of hTERT are associated with poor prognosis in cervical cancer[J]. Sci Rep, 2017, 7: 41670. DOI: 10.1038/srep41670.
[19]
Xu Y, Luo H, Hu Q, et al. Identification of potential driver genes based on multi-genomic data in cervical cancer[J]. Front Genet, 2021, 12: 598304. DOI: 10.3389/fgene.2021.598304.
[20]
Si X, Xu F, Xu F, et al. CADM1 inhibits ovarian cancer cell proliferation and migration by potentially regulating the PI3K/Akt/mTOR pathway[J]. Biomed Pharmacother, 2020, 123: 109717. DOI: 10.1016/j.biopha.2019.109717.
[21]
Zummeren MV, Kremer WW, Leeman A, et al. HPV E4 expression and DNA hypermethylation of CADM1, MAL, and miR124-2 genes in cervical cancer and precursor lesions[J]. Mod Pathol, 2018, 31(12): 1842-1850. DOI: 10.1038/s41379-018-0101-z.
[22]
Del Pino M, Sierra A, Marimon L, et al. CADM1, MAL, and miR124 promoter methylation as biomarkers of transforming cervical intrapithelial lesions[J]. Int J Mol Sci, 2019, 20(9): 2262. DOI: 10.3390/ijms20092262.
[23]
Vallath S, Sage EK, Kolluri KK, et al. CADM1 inhibits squamous cell carcinoma progression by reducing STAT3 activity[J]. Sci Rep, 2016, 6: 24006. DOI: 10.1038/srep24006.
[24]
Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer[J]. Cancer Cell, 2016, 29(6): 783-803. DOI: 10.1016/j.ccell.2016.05.005.
[25]
He C, Lv X, Huang C, et al. A human papillomavirus-independent cervical cancer animal model reveals unconventional mechanisms of cervical carcinogenesis[J]. Cell Rep, 2019, 26(10): 2636.e5-2650.e5. DOI: 10.1016/j.celrep.2019.02.004.
[26]
Harden ME, Munger K. Perturbation of DROSHA and DICER expression by human papillomavirus 16 oncoproteins[J]. Virology, 2017, 507: 192-198. DOI: 10.1016/j.virol.2017.04.022.
[27]
Snoek BC, Babion I, Koppers-Lalic D, et al. Altered microRNA processing proteins in HPV-induced cancers[J]. Curr Opin Virol, 2019, 39: 23-32. DOI: 10.1016/j.coviro.2019.07.002.
[28]
Shen C, Liu Y, Shi S, et al. Long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele-specific MYC expression in HeLa cells[J]. Int J Cancer, 2017, 141(3): 540-548. DOI: 10.1002/ijc.30763.
[29]
Aschero R, Francis JH, Ganiewich D, et al. Recurrent somatic chromosomal abnormalities in relapsed extraocular retinoblastoma[J]. Cancers (Basel), 2021, 13(4): 673. DOI: 10.3390/cancers13040673.
[30]
Meric-Bernstam F, Johnson AM, Dumbrava EEI, et al. Advances in HER2-targeted therapy: novel agents and opportunities beyond breast and gastric cancer[J]. Clin Cancer Res, 2019, 25(7): 2033-2041. DOI: 10.1158/1078-0432.Ccr-18-2275.
[31]
Liu S, Lee JS, Jie C, et al. HER2 overexpression triggers an IL1α proinflammatory circuit to drive tumorigenesis and promote chemotherapy resistance[J]. Cancer Res, 2018, 78(8): 2040-2051. DOI: 10.1158/0008-5472.Can-17-2761.
[32]
Cancer Genome Atlas Research Network, Albert Einstein College of Medicine, Analytical Biological Services, et al. Integrated genomic and molecular characterization of cervical cancer[J]. Nature, 2017, 543(7645): 378-384. DOI: 10.1038/nature21386.
[33]
Halle MK, Ojesina AI, Engerud H, et al. Clinicopathologic and molecular markers in cervical carcinoma: a prospective cohort study[J]. Am J Obstet Gynecol, 2017, 217(4): 432.e431-432.e417. DOI: 10.1016/j.ajog.2017.05.068.
[34]
Oh DY, Kim S, Choi YL, et al. HER2 as a novel therapeutic target for cervical cancer[J]. Oncotarget, 2015, 6(34): 36219-36230. DOI: 10.18632/oncotarget.5283.
[35]
夏昌发,乔友林,张勇,等. WHO全球消除宫颈癌战略及我国面临的挑战和应对策略[J]. 中华医学杂志2020, 100 (44): 3484-3488. DOI: 10.3760/cma.j.cn112137-20200909-02606.
[36]
Bai L, Sun W, Han Z, et al. CircSND1 regulated by TNF-α promotes the migration and invasion of cervical cancer cells[J]. Cancer Manag Res, 2021, 13: 259-275. DOI: 10.2147/cmar.S289032.
[37]
Joo J, Omae Y, Hitomi Y, et al. The association of integration patterns of human papilloma virus and single nucleotide polymorphisms on immune- or DNA repair-related genes in cervical cancer patients[J]. Sci Rep, 2019, 9(1): 13132. DOI: 10.1038/s41598-019-49523-0.
[38]
Levy S, Sutton G, Ng PC, et al. The diploid genome sequence of an individual human[J]. PLoS Biol, 2007, 5(10): e254.DOI: 10.1371/journal.pbio.0050254.
[39]
Han Y, Ji L, Guan Y, et al. An epigenomic landscape of cervical intraepithelial neoplasia and cervical cancer using single-base resolution methylome and hydroxymethylome[J]. Clin Transl Med, 2021, 11(7): e498. DOI: 10.1002/ctm2.498.
[40]
Nandolo W, Mészáros G, Wurzinger M, et al. Detection of copy number variants in African goats using whole genome sequence data[J]. BMC Genomics, 2021, 22(1): 398-398. DOI: 10.1186/s12864-021-07703-1.
[41]
Fan Y, Du X, Liu X, et al. Rare copy number variations in a Chinese cohort of autism spectrum disorder[J]. Front Genet, 2018, 9: 665. DOI: 10.3389/fgene.2018.00665.
[42]
Cao Y, Li J, Jia Y, et al. CircRNA circ_POLA2 promotes cervical squamous cell carcinoma progression via regulating miR-326/GNB1[J]. Front Oncol, 2020, 10: 959. DOI: 10.3389/fonc.2020.00959.
[43]
Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research[J]. Clin Proteomics, 2020, 17: 17. DOI: 10.1186/s12014-020-09283-w.
[1] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[2] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[3] 顾娟, 孙擎擎, 胡方方, 曹义娟, 祁玉娟. 子宫内膜容受性检测改善胚胎反复种植失败患者妊娠结局的临床应用[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 582-587.
[4] 周东杰, 蒋敏, 范海瑞, 高玲玲, 孔祥, 卢丹, 王丽萍. 非编码RNA在卵泡发育成熟中作用及其机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 387-393.
[5] 陈荟竹, 郭应坤, 汪昕蓉, 宁刚, 陈锡建. 上皮性卵巢癌"二元论模型"的分子生物学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 394-402.
[6] 韩春颖, 王婷婷, 李艳艳, 朴金霞. 子宫内膜癌患者淋巴管间隙浸润预测因素研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 403-409.
[7] 魏权, 张燊, 陈慧佳, 邹姮, 胡丽娜. 女性生殖道微生物群与辅助生殖技术相关性研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 151-155.
[8] 刘艳艳, 谭曦, 彭雪. 妊娠合并膀胱低度恶性潜能乳头状尿路上皮肿瘤并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 212-218.
[9] 林凌, 李佩, 赵玮. 牛牙样牙发病机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 75-80.
[10] 樊丽超, 郭瑾瑛, 陈鑫. 野生型RET与RET/PTC融合基因检测对甲状腺乳头状癌中央区淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 631-635.
[11] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[12] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[13] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[14] 刘迎, 尹嫚, 杨林青, 王云飞. 子宫颈浸润性复层产黏液的癌的诊断学特征并文献复习[J]. 中华诊断学电子杂志, 2023, 11(03): 173-177.
[15] 杨海华, 袁景林, 周晓梅, 牛军伟. RNF213基因突变所致烟雾病一家系病例临床分析并文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 495-498.
阅读次数
全文


摘要