| [1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
| [2] |
Wang Z, Wang W, Zhao W, et al. Folate inhibits miR-27a-3p expression during cervical carcinoma progression and oncogenic activity in human cervical cancer cells[J]. Biomed Pharmacother, 2020, 122: 109654. DOI: 10.1016/j.biopha.2019.109654.
|
| [3] |
Rodrigues C, Joy LR, Sachithanandan SP, et al. Notch signalling in cervical cancer[J]. Exp Cell Res, 2019, 385(2): 111682. DOI: 10.1016/j.yexcr.2019.111682.
|
| [4] |
Tilborghs S, Corthouts J, Verhoeven Y, et al. The role of nuclear factor-kappa B signaling in human cervical cancer[J]. Crit Rev Oncol Hematol, 2017, 120: 141-150. DOI: 10.1016/j.critrevonc.2017.11.001.
|
| [5] |
Brezina S, Feigl M, Gumpenberger T, et al. Genome-wide association study of germline copy number variations reveals an association with prostate cancer aggressiveness[J]. Mutagenesis, 2020, 35(3): 283-290. DOI: 10.1093/mutage/geaa010.
|
| [6] |
Liu H, Gu X, Wang G, et al. Copy number variations primed lncRNAs deregulation contribute to poor prognosis in colorectal cancer[J]. Aging (Albany NY), 2019, 11(16): 6089-6108. DOI: 10.18632/aging.102168.
|
| [7] |
Wang K, Yu X, Jiang H, et al. Genome-wide expression profiling-based copy number variations and colorectal cancer risk in Chinese[J]. Mol Carcinog, 2019, 58(7): 1324-1333. DOI: 10.1002/mc.23015.
|
| [8] |
Burk RD, Chen Z, Saller C, et al. Integrated genomic and molecular characterization of cervical cancer[J]. Nature, 2017, 543(7645): 378-384. DOI: 10.1038/nature21386.
|
| [9] |
Zhong Q, Lu M, Yuan W, et al. Eight-lncRNA signature of cervical cancer were identified by integrating DNA methylation, copy number variation and transcriptome data[J]. J Transl Med, 2021, 19(1): 58. DOI: 10.1186/s12967-021-02705-9.
|
| [10] |
Huang J, Qian Z, Gong Y, et al. Comprehensive genomic variation profiling of cervical intraepithelial neoplasia and cervical cancer identifies potential targets for cervical cancer early warning[J]. J Med Genet, 2019, 56(3): 186-194. DOI: 10.1136/jmedgenet-2018-105745.
|
| [11] |
Zammataro L, Lopez S, Bellone S, et al. Whole-exome sequencing of cervical carcinomas identifies activating ERBB2 and PIK3CA mutations as targets for combination therapy[J]. Proc Natl Acad Sci, 2019, 116(45): 22730-22736. DOI: 10.1073/pnas.1911385116.
|
| [12] |
Tian R, Cui Z, He D, et al. Risk stratification of cervical lesions using capture sequencing and machine learning method based on HPV and human integrated genomic profiles[J]. Carcinogenesis, 2019, 40(10): 1220-1228. DOI: 10.1093/carcin/bgz094.
|
| [13] |
Litwin TR, Clarke MA, Dean M, et al. Somatic host cell alterations in HPV carcinogenesis[J]. Viruses, 2017, 9(8): 206. DOI: 10.3390/v9080206.
|
| [14] |
Joharinia N, Farhadi A, Hosseini SY, et al. Association of HPV16 and 18 genomic copies with histological grades of cervical lesions[J]. Virusdisease, 2019, 30(3): 387-393. DOI: 10.1007/s13337-019-00545-2.
|
| [15] |
Ji W, Lou W, Hong Z, et al. Genomic amplification of HPV, h-TERC and c-MYC in liquid-based cytological specimens for screening of cervical intraepithelial neoplasia and cancer[J]. Oncol Lett, 2019, 17(2): 2099-2106. DOI: 10.3892/ol.2018.9825.
|
| [14] |
Loharamtaweethong K, Supakatitham C, Vinyuvat S, et al. Prognostic significance of PD-L1 protein expression and copy number gains in locally advanced cervical cancer[J]. Asian Pac J Allergy Immunol, 2021, 39(4): 309-318. DOI: 10.12932/AP-120419-0538.
|
| [15] |
Wright TC, Compagno J, Romano P, et al. Amplification of the 3q chromosomal region as a specific marker in cervical cancer[J]. Am J Obstet Gynecol, 2015, 213(1): 51.e51-51.e58. DOI: 10.1016/j.ajog.2015.02.001.
|
| [16] |
Koeneman MM, Ovestad IT, Janssen EAM, et al. Gain of chromosomal region 3q26 as a prognostic biomarker for high-grade cervical intraepithelial neoplasia: literature overview and pilot study[J]. Pathol Oncol Res, 2019, 25(2): 549-557. DOI: 10.1007/s12253-018-0480-y.
|
| [17] |
Liu Y, Fan P, Yang Y, et al. Human papillomavirus and human telomerase RNA component gene in cervical cancer progression[J]. Sci Rep, 2019, 9(1): 15926. DOI: 10.1038/s41598-019-52195-5.
|
| [18] |
Yang H, Zhang H, Zhong Y, et al. Concomitant underexpression of TGFBR2 and overexpression of hTERT are associated with poor prognosis in cervical cancer[J]. Sci Rep, 2017, 7: 41670. DOI: 10.1038/srep41670.
|
| [19] |
Xu Y, Luo H, Hu Q, et al. Identification of potential driver genes based on multi-genomic data in cervical cancer[J]. Front Genet, 2021, 12: 598304. DOI: 10.3389/fgene.2021.598304.
|
| [20] |
Si X, Xu F, Xu F, et al. CADM1 inhibits ovarian cancer cell proliferation and migration by potentially regulating the PI3K/Akt/mTOR pathway[J]. Biomed Pharmacother, 2020, 123: 109717. DOI: 10.1016/j.biopha.2019.109717.
|
| [21] |
Zummeren MV, Kremer WW, Leeman A, et al. HPV E4 expression and DNA hypermethylation of CADM1, MAL, and miR124-2 genes in cervical cancer and precursor lesions[J]. Mod Pathol, 2018, 31(12): 1842-1850. DOI: 10.1038/s41379-018-0101-z.
|
| [22] |
Del Pino M, Sierra A, Marimon L, et al. CADM1, MAL, and miR124 promoter methylation as biomarkers of transforming cervical intrapithelial lesions[J]. Int J Mol Sci, 2019, 20(9): 2262. DOI: 10.3390/ijms20092262.
|
| [23] |
Vallath S, Sage EK, Kolluri KK, et al. CADM1 inhibits squamous cell carcinoma progression by reducing STAT3 activity[J]. Sci Rep, 2016, 6: 24006. DOI: 10.1038/srep24006.
|
| [24] |
Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer[J]. Cancer Cell, 2016, 29(6): 783-803. DOI: 10.1016/j.ccell.2016.05.005.
|
| [25] |
He C, Lv X, Huang C, et al. A human papillomavirus-independent cervical cancer animal model reveals unconventional mechanisms of cervical carcinogenesis[J]. Cell Rep, 2019, 26(10): 2636.e5-2650.e5. DOI: 10.1016/j.celrep.2019.02.004.
|
| [26] |
Harden ME, Munger K. Perturbation of DROSHA and DICER expression by human papillomavirus 16 oncoproteins[J]. Virology, 2017, 507: 192-198. DOI: 10.1016/j.virol.2017.04.022.
|
| [27] |
Snoek BC, Babion I, Koppers-Lalic D, et al. Altered microRNA processing proteins in HPV-induced cancers[J]. Curr Opin Virol, 2019, 39: 23-32. DOI: 10.1016/j.coviro.2019.07.002.
|
| [28] |
Shen C, Liu Y, Shi S, et al. Long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele-specific MYC expression in HeLa cells[J]. Int J Cancer, 2017, 141(3): 540-548. DOI: 10.1002/ijc.30763.
|
| [29] |
Aschero R, Francis JH, Ganiewich D, et al. Recurrent somatic chromosomal abnormalities in relapsed extraocular retinoblastoma[J]. Cancers (Basel), 2021, 13(4): 673. DOI: 10.3390/cancers13040673.
|
| [30] |
Meric-Bernstam F, Johnson AM, Dumbrava EEI, et al. Advances in HER2-targeted therapy: novel agents and opportunities beyond breast and gastric cancer[J]. Clin Cancer Res, 2019, 25(7): 2033-2041. DOI: 10.1158/1078-0432.Ccr-18-2275.
|
| [31] |
Liu S, Lee JS, Jie C, et al. HER2 overexpression triggers an IL1α proinflammatory circuit to drive tumorigenesis and promote chemotherapy resistance[J]. Cancer Res, 2018, 78(8): 2040-2051. DOI: 10.1158/0008-5472.Can-17-2761.
|
| [32] |
Cancer Genome Atlas Research Network, Albert Einstein College of Medicine, Analytical Biological Services, et al. Integrated genomic and molecular characterization of cervical cancer[J]. Nature, 2017, 543(7645): 378-384. DOI: 10.1038/nature21386.
|
| [33] |
Halle MK, Ojesina AI, Engerud H, et al. Clinicopathologic and molecular markers in cervical carcinoma: a prospective cohort study[J]. Am J Obstet Gynecol, 2017, 217(4): 432.e431-432.e417. DOI: 10.1016/j.ajog.2017.05.068.
|
| [34] |
Oh DY, Kim S, Choi YL, et al. HER2 as a novel therapeutic target for cervical cancer[J]. Oncotarget, 2015, 6(34): 36219-36230. DOI: 10.18632/oncotarget.5283.
|
| [35] |
|
| [36] |
Bai L, Sun W, Han Z, et al. CircSND1 regulated by TNF-α promotes the migration and invasion of cervical cancer cells[J]. Cancer Manag Res, 2021, 13: 259-275. DOI: 10.2147/cmar.S289032.
|
| [37] |
Joo J, Omae Y, Hitomi Y, et al. The association of integration patterns of human papilloma virus and single nucleotide polymorphisms on immune- or DNA repair-related genes in cervical cancer patients[J]. Sci Rep, 2019, 9(1): 13132. DOI: 10.1038/s41598-019-49523-0.
|
| [38] |
Levy S, Sutton G, Ng PC, et al. The diploid genome sequence of an individual human[J]. PLoS Biol, 2007, 5(10): e254.DOI: 10.1371/journal.pbio.0050254.
|
| [39] |
Han Y, Ji L, Guan Y, et al. An epigenomic landscape of cervical intraepithelial neoplasia and cervical cancer using single-base resolution methylome and hydroxymethylome[J]. Clin Transl Med, 2021, 11(7): e498. DOI: 10.1002/ctm2.498.
|
| [40] |
Nandolo W, Mészáros G, Wurzinger M, et al. Detection of copy number variants in African goats using whole genome sequence data[J]. BMC Genomics, 2021, 22(1): 398-398. DOI: 10.1186/s12864-021-07703-1.
|
| [41] |
Fan Y, Du X, Liu X, et al. Rare copy number variations in a Chinese cohort of autism spectrum disorder[J]. Front Genet, 2018, 9: 665. DOI: 10.3389/fgene.2018.00665.
|
| [42] |
Cao Y, Li J, Jia Y, et al. CircRNA circ_POLA2 promotes cervical squamous cell carcinoma progression via regulating miR-326/GNB1[J]. Front Oncol, 2020, 10: 959. DOI: 10.3389/fonc.2020.00959.
|
| [43] |
Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research[J]. Clin Proteomics, 2020, 17: 17. DOI: 10.1186/s12014-020-09283-w.
|