[1] |
Alexander RT, Gil-Peña H, Greenbaum LA, et al. Hereditary distal renal tubular acidosis[M] // Adam MP, Feldman J, Mirzaa GM, et al. GeneReviews.Seattle WA: University of Washington, Seattle, 1993.
|
[2] |
Yang M, Sheng Q, Ge S, et al. Mutations and clinical characteristics of dRTA caused by SLC4A1 mutations: analysis based on published patients [J]. Front Pediatr, 2023, 11: 1077120. DOI: 10.3389/fped.2023.1077120.
|
[3] |
Palazzo V, Provenzano A, Becherucci F, et al. The genetic and clinical spectrum of a large cohort of patients with distal renal tubular acidosis [J]. Kidney Int, 2017, 91(5): 1243-1255. DOI: 10.1016/j.kint.2016.12.017.
|
[4] |
Huang L, Qi C, Zhu G, et al. Genetic testing enables a precision medicine approach for nephrolithiasis and nephrocalcinosis in pediatrics: a single-center cohort [J]. Mol Genet Genomics, 2022, 297(4): 1049-1061. DOI: 10.1007/s00438-022-01897-z.
|
[5] |
Cogal AG, Arroyo J, Shah RJ, et al. Comprehensive genetic analysis reveals complexity of monogenic urinary stone disease [J]. Kidney Int Rep, 2021, 6(11): 2862-2884. DOI: 10.1016/j.ekir.2021.08.033.
|
[6] |
Oh J, Shin JI, Lee K, et al. Clinical application of a phenotype-based NGS panel for differential diagnosis of inherited kidney disease and beyond [J]. Clin Genet, 2021, 99(2): 236-249. DOI: 10.1111/cge.13869.
|
[7] |
Weber S, Soergel M, Jeck N, et al. Atypical distal renal tubular acidosis confirmed by mutation analysis [J]. Pediatr Nephrol, 2000, 15(3-4): 201-204. DOI: 10.1007/s004670000454.
|
[8] |
Bruce LJ, Cope DL, Jones GK, et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger ( Band 3, AE1) gene [J]. J Clin Invest, 1997, 100(7): 1693-1707. DOI: 10.1172/jci119694.
|
[9] |
Forni Ogna V, Blanchard A, Vargas-Poussou R, et al. Signification of distal urinary acidification defects in hypocitraturic patients [J]. PLoS One, 2017, 12(5): e0177329. DOI: 10.1371/journal.pone.0177329.
|
[10] |
Park E, Cho MH, Hyun HS, et al. Genotype-phenotype analysis in pediatric patients with distal renal tubular acidosis [J]. Kidney Blood Press Res, 2018, 43(2): 513-521. DOI: 10.1159/000488698.
|
[11] |
Sritippayawan S, Kirdpon S, Vasuvattakul S, et al. A de novo R589C mutation of anion exchanger 1 causing distal renal tubular acidosis [J]. Pediatr Nephrol, 2003, 18(7): 644-648. DOI: 10.1007/s00467-003-1112-6.
|
[12] |
|
[13] |
|
[14] |
Escobar L, Mejía N, Gil H, et al. Distal renal tubular acidosis: a hereditary disease with an inadequate urinary H + excretion [J]. Nefrologia, 2013, 33(3): 289-296. DOI: 10.3265/Nefrologia.pre2012.Oct.11592.
|
[15] |
Shao L, Xu Y, Dong Q, et al. A novel SLC4A1 variant in an autosomal dominant distal renal tubular acidosis family with a severe phenotype [J]. Endocrine, 2010, 37(3): 473-478. DOI: 10.1007/s12020-010-9340-6.
|
[16] |
Sakuraya K, Nozu K, Oka I, et al. A different clinical manifestation in a Japanese family with autosomal dominant distal renal tubular acidosis caused by SLC4A1 mutation [J]. CEN Case Rep, 2020, 9(4): 442-445. DOI: 10.1007/s13730-020-00500-x.
|
[17] |
Sawasdee N, Udomchaiprasertkul W, Noisakran S, et al. Trafficking defect of mutant kidney anion exchanger 1 (kAE1) proteins associated with distal renal tubular acidosis and Southeast Asian ovalocytosis [J]. Biochem Biophys Res Commun, 2006, 350(3): 723-730. DOI: 10.1016/j.bbrc.2006.09.113.
|
[18] |
Pereira PC, Miranda DM, Oliveira EA, et al. Molecular pathophysiology of renal tubular acidosis [J]. Curr Genomics, 2009, 10(1): 51-59. DOI: 10.2174/138920209787581262.
|
[19] |
Gómez-Conde S, García-Castaño A, Aguirre M, et al. Molecular aspects and long-term outcome of patients with primary distal renal tubular acidosis [J]. Pediatr Nephrol, 2021, 36(10): 3133-3142. DOI: 10.1007/s00467-021-05066-z.
|
[20] |
|
[21] |
Dawman L, Tiewsoh K, Barman P, et al. Phenotype and genotype profile of children with primary distal renal tubular acidosis: a 10-year experience from a North Indian Teaching Institute [J]. J Pediatr Genet, 2022, 11(3): 221-226. DOI: 10.1055/s-0041-1724114.
|