切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2025, Vol. 21 ›› Issue (03) : 278 -284. doi: 10.3877/cma.j.issn.1673-5250.2025.03.005

专题论坛

功能性近红外光谱技术在儿童注意缺陷多动障碍患儿治疗评估中的临床应用进展
杨筱涛1,2, 罗蓉1,3,()   
  1. 1四川大学华西第二医院儿科,成都 610041
    2成都市龙泉驿区第一人民医院儿科,成都 610100
    3四川大学华西第二医院出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2025-04-08 修回日期:2025-05-15 出版日期:2025-06-01
  • 通信作者: 罗蓉

Application of functional near-infrared spectroscopy technology in treatment evaluation of children with attention deficit hyperactivity disorder

Xiaotao Yang1,2, Rong Luo1,3,()   

  1. 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
    2Department of Pediatrics, the First People′s Hospital of Longquanyi District of Chengdu, Chengdu 610100, Sichuan Province, China
    3Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2025-04-08 Revised:2025-05-15 Published:2025-06-01
  • Corresponding author: Rong Luo
  • Supported by:
    Science and Technology Program of Sichuan Province(2023NSFSC1492)
引用本文:

杨筱涛, 罗蓉. 功能性近红外光谱技术在儿童注意缺陷多动障碍患儿治疗评估中的临床应用进展[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(03): 278-284.

Xiaotao Yang, Rong Luo. Application of functional near-infrared spectroscopy technology in treatment evaluation of children with attention deficit hyperactivity disorder[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2025, 21(03): 278-284.

注意缺陷多动障碍(ADHD)作为一种常见儿童神经发育障碍,是一组与发育水平不相称的注意集中困难、活动过度或冲动的综合征,童年期起病,部分患儿的ADHD症状可持续至成年。功能性近红外光谱(fNIRS)技术是一种非侵入性光学检测技术,通过检测大脑皮质氧合血红蛋白(HbO2)和脱氧血红蛋白(DHB)水平变化,可实时反映大脑皮质血流动力学变化,从而达到评估大脑活动功能的目的。研究表明,fNIRS技术为儿童ADHD治疗评估及监测提供了一种新的评估工具和方法,并展现出独特价值。笔者拟就fNIRS技术在儿童ADHD治疗评估中的应用研究进展进行阐述,重点探讨ADHD患儿接受治疗后的不同区域大脑皮质活动的fNIRS表现,旨在为临床诊治ADHD患儿提供参考。

Attention deficit hyperactivity disorder (ADHD), as a common neurodevelopmental disorder in children, is a group of syndromes characterized by difficulty in concentrating, excessive activity or impulsivity that is disproportionate to the developmental level. It begins in childhood, and the symptoms of some children may persist into adulthood. Functional near-infrared spectroscopy (fNIRS) technology is a non-invasive optical detection technique. By monitoring the changes in oxyhemoglobin (HbO2) and deoxygenated hemoglobin (DHB) levels in the cerebral cortex, it reflects the hemodynamic changes in the cerebral cortex in real time, thereby evaluating brain activity functions. Studies have shown that the fNIRS technology provides a new assessment tool and method for the treatment evaluation and monitoring of ADHD in children, and demonstrates its unique value. The authors intend to elaborate on the research progress of the application of fNIRS technology in the treatment and evaluation of children with ADHD, and focuses on analyzing the fNIRS manifestations of cerebral cortical activities in different regions of children with ADHD after treatment, aiming to provide a reference for clinical diagnosis and treatment of children with ADHD.

[1]
Miller CJ, Golovina E, Gokuladhas S, et al. Unraveling ADHD: genes, co-occurring traits, and developmental dynamics [J]. Life Sci Alliance, 2025, 8(5): e202403029. DOI: 10.26508/lsa.202403029.
[2]
Faraone SV, Bellgrove MA, Brikell I, et al. Attention-deficit/hyperactivity disorder [J]. Nat Rev Dis Primers, 2024, 10(1): 11. DOI: 10.1038/s41572-024-00495-0.
[3]
Ayano G, Demelash S, Gizachew Y, et al. The global prevalence of attention deficit hyperactivity disorder in children and adolescents: an umbrella review of Meta-analyses [J]. J Affect Disord, 2023, 339: 860-866. DOI: 10.1016/j.jad.2023.07.071.
[4]
杨晓蕾,李洪杰,多永胜,等. 中国儿童青少年1990—2019年注意缺陷多动障碍疾病负担及预测 [J]. 中国学校卫生2023, 44(7): 1107-1111. DOI: 10.16835/j.cnki.1000-9817.2023.07.034.
[5]
Zhang Y, Yin L, You C, et al. Efficacy and safety of methylphenidate and atomoxetine in medication-naive children with attention-deficit hyperactivity disorder in a real-world setting [J]. Drugs R D, 2024, 24(1): 29-39. DOI: 10.1007/s40268-023-00445-3.
[6]
Drechsler R, Brem S, Brandeis D, et al. ADHD: current concepts and treatments in children and adolescents [J]. Neuropediatrics, 2020, 51(5): 315-335. DOI: 10.1055/s-0040-1701658.
[7]
Martin-Key NA, Stevenson A, Roy P. Investigating the clinical utility of the combined use of objective and subjective measures of ADHD during treatment optimization [J]. J Clin Psychopharmacol, 2022, 42(2): 146-153. DOI: 10.1097/JCP.0000000000001350.
[8]
Liu Q, Liao W, Yang L, et al. Aberrant amplitude of low-frequency fluctuation and functional connectivity in children with different subtypes of ADHD: a resting-state fNIRS study [J]. BMC Psychiatry, 2024, 24(1): 919. DOI: 10.1186/s12888-024-06350-6.
[9]
Wu T, Liu X, Cheng F, et al. Dorsolateral prefrontal cortex dysfunction caused by a go/no-go task in children with attention-deficit hyperactivity disorder: a functional near-infrared spectroscopy study [J]. Front Neurosci, 2023, 17: 1145485. DOI: 10.3389/fnins.2023.1145485.
[10]
Poliakova E, Conrad AL, Schieltz KM, et al. Using fNIRS to evaluate ADHD medication effects on neuronal activity: a systematic literature review [J]. Front Neuroimaging, 2023, 2: 1083036. DOI: 10.3389/fnimg.2023.1083036.
[11]
Gallagher A, Wallois F, Obrig H. Functional near-infrared spectroscopy in pediatric clinical research: different pathophysiologies and promising clinical applications [J]. Neurophotonics, 2023, 10(2): 023517. DOI: 10.1117/1.NPh.10.2.023517.
[12]
Dolu N, Altinkaynak M, Guven A, et al. Effects of methylphenidate treatment in children with ADHD: a multimodal EEG/fNIRS approach [J]. Psychiatry Clin Psychopharmacol, 2019, 29(3): 285-292. DOI: 10.1080/24750573.2018.1542779.
[13]
Matsuura N, Ishitoobi M, Arai S, et al. Effects of methylphenidate in children with attention deficit hyperactivity disorder: a near-infrared spectroscopy study with CANTAB®[J]. Child Adolesc Psychiatry Ment Health, 2014, 8(1): 273. DOI: 10.1186/s13034-014-0032-5.
[14]
Zhuo L, Zhao X, Zhai Y, et al. Transcutaneous electrical acupoint stimulation for children with attention-deficit/hyperactivity disorder: a randomized clinical trial [J]. Transl Psychiatry, 2022, 12(1): 165. DOI: 10.1038/s41398-022-01914-0.
[15]
Grazioli S, Rosi E, Mauri M, et al. Patterns of response to methylphenidate administration in children with ADHD: a personalized medicine approach through clustering analysis [J]. Children, 2021, 8(11): 1008. DOI: 10.3390/children8111008.
[16]
Nakanishi Y, Ota T, Iida J, et al. Differential therapeutic effects of atomoxetine and methylphenidate in childhood attention deficit/hyperactivity disorder as measured by near-infrared spectroscopy [J]. Child Adolesc Psychiatry Ment Health, 2017, 11: 26. DOI: 10.1186/s13034-017-0163-6.
[17]
Nagashima M, Monden Y, Dan I, et al. Neuropharmacological effect of atomoxetine on attention network in children with attention deficit hyperactivity disorder during oddball paradigms as assessed using functional near-infrared spectroscopy [J]. Neurophotonics, 2014, 1(2): 025007. DOI: 10.1117/1.NPh.1.2.025007.
[18]
Kurane K, Lin N, Dan I, et al. Visualizing changes in cerebral hemodynamics in children with ADHD who have discontinued methylphenidate: a pilot study on using brain function for medication discontinuation decisions [J]. Brain Dev, 2024, 46(10): 373-382. DOI: 10.1016/j.braindev.2024.09.004.
[19]
Ota T, Iida J, Nakanishi Y, et al. Increased prefrontal hemodynamic change after atomoxetine administration in pediatric attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy [J]. Psychiatry Clin Neurosci, 2015, 69(3): 161-170. DOI: 10.1111/pcn.12251.
[20]
Jang S, Choi J, Oh J, et al. Use of virtual reality working memory task and functional near-infrared spectroscopy to assess brain hemodynamic responses to methylphenidate in ADHD children [J]. Front Psychiatry, 2020, 11: 564618. DOI: 10.3389/fpsyt.2020.564618.
[21]
Wu WJ, Cui LB, Cai M, et al. A parallel-group study of near-infrared spectroscopy-neurofeedback in children with attention deficit hyperactivity disorder [J]. Psychiatry Res, 2022, 309: 114364. DOI: 10.1016/j.psychres.2021.114364.
[22]
Rahimpour Jounghani A, Gozdas E, Dacorro L, et al. Neuromonitoring-guided working memory intervention in children with ADHD [J]. iScience, 2024, 27(11): 111087. DOI: 10.1016/j.isci.2024.111087.
[23]
Wang J, Zou Z, Huang H, et al. Effects of repetitive transcranial magnetic stimulation on prefrontal cortical activation in children with attention deficit hyperactivity disorder: a functional near-infrared spectroscopy study [J]. Front Neurol, 2024, 15: 1503975. DOI: 10.3389/fneur.2024.1503975.
[24]
Duffy KA, Rosch KS, Nebel MB, et al. Increased integration between default mode and task-relevant networks in children with ADHD is associated with impaired response control [J]. Dev Cogn Neurosci, 2021, 50: 100980. DOI: 10.1016/j.dcn.2021.100980.
[25]
Ainsworth M, Wu Z, Browncross H, et al. Frontopolar cortex shapes brain network structure across prefrontal and posterior cingulate cortex [J]. Prog Neurobiol, 2022, 217: 102314. DOI: 10.1016/j.pneurobio.2022.102314.
[26]
Yamamuro K. Near-infrared spectroscopy in child and adolescent neurodevelopmental disorders [J]. PCN Rep, 2022, 1(4): e59. DOI: 10.1002/pcn5.59.
[27]
Stone HL, Mitchell JL, Fuentes-Jimenez M, et al. Anatomically distinct regions in the inferior frontal cortex are modulated by task and reading skill [J]. J Neurosci, 2025, 45(19): e1767242025. DOI: 10.1523/JNEUROSCI.1767-24.2025.
[28]
Ishii-Takahashi A, Takizawa R, Nishimura Y, et al. Neuroimaging-aided prediction of the effect of methylphenidate in children with attention-deficit hyperactivity disorder: a randomized controlled trial [J]. Neuropsychopharmacology, 2015, 40(12): 2852-2861. DOI: 10.1038/npp.2015.154.
[29]
Schecklmann M, Schaldecker M, Aucktor S, et al. Effects of methylphenidate on olfaction and frontal and temporal brain oxygenation in children with ADHD [J]. J Psychiatr Res, 2011, 45(11): 1463-1470. DOI: 10.1016/j.jpsychires.2011.05.011.
[30]
Klein-Flügge MC, Bongioanni A, Rushworth MFS. Medial and orbital frontal cortex in decision-making and flexible behavior [J]. Neuron, 2022, 110(17): 2743-2770. DOI: 10.1016/j.neuron.2022.05.022.
[31]
Brevegliere R, Brandolani R, Diomedi S, et al. Role of the medial posterior parietal cortex in orchestrating attention and reaching [J]. J Neurosci, 2025, 45(1): e06592424. DOI: 10.1523/JNEUROSCI.0659-24.2024.
[32]
Yin Q, Johnson EL, Tang L, et al. Direct brain recordings reveal occipital cortex involvement in memory development [J]. Neuropsychologia, 2020, 148: 107625. DOI: 10.1016/j.neuropsychologia.2020.107625.
[33]
Kobayashi M, Ikeda T, Tokuda T, et al. Acute administration of methylphenidate differentially affects cortical processing of emotional facial expressions in attention-deficit hyperactivity disorder children as studied by functional near-infrared spectroscopy [J]. Neurophotonics, 2020, 7(2): 025003. DOI: 10.1117/1.NPh.7.2.025003.
[34]
Kim JG, Gregory E, Landau B, et al. Functions of ventral visual cortex after bilateral medial temporal lobe damage [J]. Prog Neurobiol, 2020, 191: 101819. DOI: 10.1016/j.pneurobio.2020.101819.
[35]
Zhu Y, Liu S, Zhang F, et al. Response inhibition in children with different subtypes/presentations of attention deficit hyperactivity disorder: a near-infrared spectroscopy study [J]. Front Neurosci, 2023, 17: 1119289. DOI: 10.3389/fnins.2023.1119289.
[1] 刘芳, 张展, 刘慧, 方玲, 王爱珍, 丁豆豆, 崔苗, 刘百灵, 王洁. 儿童原发性心脏肿瘤超声表现及预后的单中心回顾分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 470-476.
[2] 杨秀珍, 李丽, 徐哲明, 王晶晶, 叶菁菁. 基于排泄性尿路超声造影诊断肾内反流及与DMSA 显像的相关性分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 348-353.
[3] 谭娇艳, 袁莉, 景珅, 郭吴丹, 吴文菁. 二维剪切波弹性成像技术在评估儿童脾大中的临床应用[J/OL]. 中华医学超声杂志(电子版), 2025, 22(03): 247-252.
[4] 张国卿, 武华红, 朱春梅. 炎症及营养指标在儿童鼻病毒重症肺炎中的预测价值研究[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(03): 215-221.
[5] 向征鸿, 施春晓, 何春梅, 王禧庆, 何磊. 全血粘弹性凝血功能监测技术对于川崎病患儿凝血功能检测的临床价值[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(03): 337-343.
[6] 孙雪明, 郭慧, 刘瀚旻. 远端肾小管酸中毒伴周围神经损伤及疑似髓质海绵肾患儿1例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(03): 344-349.
[7] 李志娟, 包瑛, 索磊, 梁楠, 党佳文, 安小敏. SSBP1基因突变致常染色体显性遗传性视神经萎缩合并终末期肾病并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(03): 350-356.
[8] 王晓燕, 樊玲霞, 陈竹, 余波, 杨艳峰. 儿童先天性长QT综合征1例家系调查及临床分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(03): 357-365.
[9] 袁宏丽, 程琰, 王淑玉, 李玮, 陶亚飞, 王诗卉. 以肺部感染为首发症状的囊性纤维化患儿1例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(03): 366-374.
[10] 刘瀚旻. 儿童发育学研究的战略思考[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(03): 251-256.
[11] 谢起根, 苏诚, 徐哲, 李作青. 改良Byars分期尿道成形术与传统术式治疗重型尿道下裂的队列研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 429-435.
[12] 热夏提·热合曼, 阿尔孜古丽·喀喀尔, 阿依姆妮萨·阿卜杜热合曼, 阿布力米提·阿套拉, 库尔班江·阿布力克木, 苏力坦·乌斯曼, 安信, 加素尔·巴吐尔. 血友病患儿包皮环切术的安全性及围手术期处理[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 436-440.
[13] 陈东, 贾新建, 魏强, 刘涛, 田飞, 周祥, 韩春晨. 完全腹腔镜儿童胆总管囊肿根治术临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 152-156.
[14] 曾纪晓, 徐晓钢, 刘斐, 兰梦龙, 陶波圆, 梁子建, 温俐妮, 钟知足. 机器人胰十二指肠切除术治疗儿童胰胆系恶性肿瘤[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 157-161.
[15] 赵文锋, 贾建业, 张弋, 夏溟, 董洋, 韩从辉, 金思彤, 李建波, 贾志刚, 刘鹏飞, 许长宝, 程跃. 体外冲击波碎石术治疗儿童上尿路结石的现况调查[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 243-247.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?