切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2024, Vol. 20 ›› Issue (03) : 292 -301. doi: 10.3877/cma.j.issn.1673-5250.2024.03.008

论著

皮质类固醇治疗非卧床杜氏肌营养不良症患儿肺功能与运动功能的纵向研究
吴越廷1, 周林雨涵1, 胡钦1, 许华燕2, 黄敏1, 陈晓勇1, 张萌1, 李中会3, 茹凉4, 王秋1,(), 蔡晓唐1,()   
  1. 1. 四川大学华西第二医院康复医学科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
    2. 四川大学华西第二医院放射科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
    3. 成都市妇女儿童中心医院儿童遗传与内分泌代谢科,成都 610073
    4. 新疆医科大学第一附属医院儿内科,乌鲁木齐 830054
  • 收稿日期:2024-02-07 修回日期:2024-05-12 出版日期:2024-06-01
  • 通信作者: 王秋, 蔡晓唐

Longitudinal study of pulmonary and motor function in children with ambulatory Duchenne muscular dystrophy treated with corticosteroids

Yueting Wu1, Linyuhan Zhou1, Qin Hu1, Huayan Xu2, Min Huang1, Xiaoyong Chen1, Meng Zhang1, Zhonghui Li3, Liang Ru4, Qiu Wang1,(), Xiaotang Cai1,()   

  1. 1. Department of Rehabilitation Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
    2. Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
    3. Department of Pediatric Genetics, Endocrinology and Metabolism, Chengdu Women′s and Children′s Central Hospital, Chengdu 610073, Sichuan Province, China
    4. Department of Pediatric Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uyghur Autonomous Region, China
  • Received:2024-02-07 Revised:2024-05-12 Published:2024-06-01
  • Corresponding author: Qiu Wang, Xiaotang Cai
  • Supported by:
    Project of Sichuan Provincial Central Government Guidance for Local Science and Technology Development(2023ZYD0121, 2023ZYD0100); Science and Technology Plan Project of Sichuan Province (Key Research and Development Project)(2023YFG0284); Medical Technology Project of Health Commission of Sichuan Province(21PJ048); Science and Technology Project of Tibet Autonomous Region(XZ202201ZY0049G)
引用本文:

吴越廷, 周林雨涵, 胡钦, 许华燕, 黄敏, 陈晓勇, 张萌, 李中会, 茹凉, 王秋, 蔡晓唐. 皮质类固醇治疗非卧床杜氏肌营养不良症患儿肺功能与运动功能的纵向研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 292-301.

Yueting Wu, Linyuhan Zhou, Qin Hu, Huayan Xu, Min Huang, Xiaoyong Chen, Meng Zhang, Zhonghui Li, Liang Ru, Qiu Wang, Xiaotang Cai. Longitudinal study of pulmonary and motor function in children with ambulatory Duchenne muscular dystrophy treated with corticosteroids[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(03): 292-301.

目的

探讨对非卧床杜氏肌营养不良症(DMD)患儿采取皮质类固醇(CS)治疗≥1年的肺功能和运动功能指标变化。

方法

选择2020年4月至2021年5月四川大学华西第二医院、成都市妇女儿童中心医院和新疆医科大学第一附属医院儿内科门诊收治的采取CS治疗≥1年的32例DMD患儿为研究对象。根据患儿采取CS初治时年龄,将其分别纳入≤7岁组(n=13)与>7岁组(n=19)。对这32例患儿初治后进行为期2年的回顾性纵向研究,初治与初治后第1、2年(分别采用T0、T1、T2表示)时,使用肺功能测试仪评估2组患儿4项肺功能指标[用力肺活量占预计值百分比(FVC%)、第1秒用力呼气量占预计值百分比(FEV1%)、第1秒用力呼气量与用力肺活量的比值(FEV1/FVC)、呼气峰流速占预计值百分比(PEF%)],并采用《北极星移动评价量表》(NSAA)和3项关键运动功能指标计时测试(完成仰卧-站立、10 m走/跑和上4级楼梯各测试1次所需时间),评估患儿运动功能。所有DMD患儿与≤7岁组、>7岁组患儿不同时间点的4项肺功能指标、NSAA评分和3项关键运动功能指标比较,采用重复测量资料的方差分析或Friedman检验。采用多重线性回归分析方法,分析DMD患儿NSAA评分及3项关键运动功能指标对FVC%的影响。本研究遵循的程序符合四川大学华西第二医院伦理委员会规定,并获得该伦理委员会批准[审批文号:科研伦审2023(303)号]。

结果

①32例DMD患儿T0、T1、T2时,肺功能指标FVC%、FEV1%和FEV1/FVC分别总体比较,差异均无统计学意义(P>0.05),而PEF%呈增高趋势,总体比较,差异有统计学意义(F=4.40、P=0.016)。进一步两两比较结果显示,T1时,FVC%较T0时增加8.3%,差异有统计学意义(Z=-2.09、P=0.036);T2时,FEV1%、PEF%较T0时分别增加8.2%、9.2%,差异均有统计学意义(Z=-2.15、P=0.032,t=-2.69、P=0.011)。②T0、T1、T2时,32例DMD患儿NSAA评分呈下降趋势,而完成仰卧-站立、10 m走/跑测试所需时间,则呈增加趋势,分别总体比较,差异均有统计学意义(F=4.33、P=0.017,χ2=32.32、P<0.001,χ2=6.74、P=0.034)。③多重线性回归分析结果显示,DMD患儿初治时,NSAA评分为影响FVC%上升的独立保护因素(b=0.817,P=0.027)。④T0、T1、T2时,≤7岁组DMD患儿FVC%、FEV1%、PEF%均呈上升趋势,分别总体比较,差异亦均有统计学意义(F=10.87、12.24、11.03,P=0.004、0.003、0.003);完成仰卧-站立测试所需时间总体比较,差异有统计学意义(χ2=15.17、P=0.001)。⑤T0、T1、T2时,>7岁组DMD患儿FVC%、FEV1%、FEV1/FVC、PEF%分别总体比较,差异均无统计学意义(P>0.05);NSAA评分呈下降趋势,完成仰卧-站立与10 m走/跑测试所需时间均呈增加趋势,分别总体比较,差异均有统计学意义(χ2=6.50、20.99、10.11,P=0.039、<0.001,=0.006)。

结论

在采取CS治疗的非卧床DMD患儿中,初治年龄≤7岁者的肺功能,在初治后2年内均呈上升趋势,而初治年龄>7岁者,在初治后2年内保持稳定;在初治年龄≤7岁与>7岁者中,运动功能均呈下降趋势,并且在初治年龄>7岁者中下降更为明显。非卧床DMD患儿的NSAA评分与其肺功能具有相关性。

Objective

To explore the changes of pulmonary and motor function indexes in children with ambulatory Duchenne muscular dystrophy (DMD) treated with corticosteroids (CS) for at least one year.

Methods

A total of 32 DMD children admitted to the outpatient department of West China Second University Hospital of Sichuan University, Chengdu Women′s and Children′s Central Hospital, and the First Affiliated Hospital of Xinjiang Medical University from April 2020 to May 2021 were selected into this study. According to the age of children when they initially received treatment with CS, they were divided into ≤7 years group (n=13) and >7 years group (n=19). A 2-year retrospective longitudinal study of these 32 children was conducted after initial treatment. And the children′s pulmonary function [forced vital capacity percent predicted value (FVC%), forced expiratory volume in one second percent predicted value (FEV1%), ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC), peak expiratory flow percent predicted value (PEF%)] was assessed by spirometry at initial treatment and at 1 and 2 years after initial treatment (recorded as T0, T1 and T2, respectively). The North Star Ambulatory Assessment (NSAA) score and three key monitor function indexes timing tests (the time required to complete supine-up, 10 m walk/run, and climb 4 stairs test once each) were performed to evaluate the children′s motor function at T0, T1 and T2. Repeated measures analysis of variance or Friedman test was used to compare the 4 pulmonary function indexes and NSAA score and three key monitor function indexes of all DMD children, ≤7 years group and >7 years group at different time points. Multiple linear regression analysis was used to analyze the effect of NSAA score and three key monitor function indexes on FVC% among 32 DMD children. This study was approved by the Medical Ethics Committee of West China Second University Hospital, Sichuan University (Ethics No. 2023-303).

Results

① Among the 32 DMD children, there were no significant differences in FVC%, FEV1% and FEV1/FVC at T0, T1 and T2 (P>0.05), while the PEF% showed a upward trend, and the difference was statistically significant (F=4.40, P=0.016). Further pairwise comparison showed that FVC% at T1 was 8.3% higher than that at T0, and the difference was statistically significant (Z=-2.09, P=0.036), FEV1% and PEF% at T2 was 8.2% and 9.2% higher than these at T0, and both the differences were statistically significant (Z=-2.15, P=0.032; t=-2.69, P=0.011). ② At T0, T1, and T2, the NSAA score of 32 DMD children showed a downward trend, while the time required to complete supine-up and 10 m walk/run tests showed an increasing trend, and the differences were statistically significant (F=4.33, P=0.017; χ2=32.32, P<0.001; χ2=6.74, P=0.034). ③ Results of multiple linear regression analysis showed that NSAA score at T0 was an independent protective factor for the increase of FVC% in DMD children (b=0.817, P=0.027). ④ In ≤7 years group, FVC%, FEV1%, and PEF% showed an upward trend at T0, T1, and T2, and the differences were statistically significant (F=10.87, 12.24, 11.03; P=0.004, 0.003, 0.003). The time required to complete supine-up test at T0, T1, and T2 was also statistically significant (χ2=15.17, P=0.001). ⑤ In >7 years group, there were no statistically significant differences in FVC%, FEV1%, FEV1/FVC, and PEF% at T0, T1, and T2 (P>0.05). While the NSAA score at T0, T1 and T2 showed a downward trend, and the time required to complete supine-up and 10 m walk/run tests at T0, T1 and T2 showed an increasing trend, and all the differences were statistically significant (χ2=6.50, P=0.039; χ2=20.99, P<0.001; χ2=10.11, P=0.006).

Conclusions

Among children with ambulatory DMD treated with CS, the pulmonary function of those with initial treatment ≤ 7 years show an upward trend within 2 years after initial treatment, but remain stable within 2 years after the initial treatment for those with initial treatment > 7 years. The motor function of children with initial treatment ≤ 7 years and > 7 years all show a downward trend, and the decline is more obvious in children with initial treatment > 7 years. There is a correlation between NSAA score and pulmonary function in ambulatory DMD children.

表1 T0、T1、T2时,本研究32例DMD患儿4项肺功能指标比较(%)
表2 T0、T1、T2时,本研究32例DMD患儿NSAA评分和3项关键运动功能指标比较
表3 本研究32例DMD患儿FVC%影响因素的多重线性回归分析
表4 T0、T1、T2时,≤7岁组与>7岁组DMD患儿4项肺功能指标比较(%)
表5 T0、T1、T2时,≤7岁组与>7岁组DMD患儿NSAA评分和3项关键运动功能指标比较[M(Q1Q3)]
[1]
Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management[J]. Lancet Neurol, 2018, 17(3): 251-267. DOI: 10.1016/S1474-4422(18)30024-3.
[2]
Min YL, Bassel-Duby R, Olson EN. CRISPR correction of Duchenne muscular dystrophy[J]. Annu Rev Med, 2019, 70: 239-255. DOI: 10.1146/annurev-med-081117-010451.
[3]
Gartz M, Beatka M, Prom MJ, et al. Cardiomyocyte-produced miR-339-5p mediates pathology in Duchenne muscular dystrophy cardiomyopathy[J]. Hum Mol Genet, 2021, 30(23): 2347-2361. DOI: 10.1093/hmg/ddab199.
[4]
强坤坤,罗红. 杜氏肌营养不良症患儿的高频超声与剪切波弹性成像诊断研究现状及前景[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(2): 162-167. DOI: 10.3877/cma.j.issn.1673-5250.2023.02.007.
[5]
Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management[J]. Lancet Neurol, 2018, 17(4): 347-361. DOI: 10.1016/S1474-4422(18)30025-5.
[6]
LoMauro A, Romei M, Gandossini S, et al. Evolution of respiratory function in Duchenne muscular dystrophy from childhood to adulthood[J]. Eur Respir J, 2018, 51(2): 1701418. DOI: 10.1183/13993003.01418-2017.
[7]
Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy[J]. Nat Rev Dis Primers, 2021, 7(1): 13. DOI: 10.1038/s41572-021-00248-3.
[8]
Łoboda A, Dulak J. Muscle and cardiac therapeutic strategies for Duchenne muscular dystrophy: past, present, and future[J]. Pharmacol Rep, 2020, 72(5): 1227-1263. DOI: 10.1007/s43440-020-00134-x.
[9]
Hnaini M, Downs M, Miller MR, et al. Duchenne muscular dystrophy respiratory profiles from real world registry data[J]. Pediatr Pulmonol, 2023, 58(10): 2725-2732. DOI: 10.1002/ppul.26554.
[10]
Sheehan DW, Birnkrant DJ, Benditt JO, et al. Respiratory management of the patient with Duchenne muscular dystrophy[J]. Pediatrics, 2018, 142(Suppl 2): S62-S71. DOI: 10.1542/peds.2018-0333H.
[11]
McDonald CM, Mayer OH, Hor KN, et al. Functional and clinical outcomes associated with steroid treatment among non-ambulatory patients with Duchenne muscular Dystrophy1[J]. J Neuromuscul Dis, 2023, 10(1): 67-79. DOI: 10.3233/JND-221575.
[12]
Butterfield RJ, Kirkov S, Conway KM, et al. Evaluation of effects of continued corticosteroid treatment on cardiac and pulmonary function in non-ambulatory males with Duchenne muscular dystrophy from MD STARnet[J]. Muscle Nerve, 2022, 66(1): 15-23. DOI: 10.1002/mus.27490.
[13]
Guglieri M, Bushby K, McDermott MP, et al. Effect of different corticosteroid dosing regimens on clinical outcomes in boys with Duchenne muscular dystrophy: a randomized clinical trial[J]. JAMA, 2022, 327(15): 1456-1468. DOI: 10.1001/jama.2022.4315.
[14]
Trucco F, Domingos JP, Tay CG, et al. Cardiorespiratory progression over 5 years and role of corticosteroids in Duchenne muscular dystrophy: a single-site retrospective longitudinal study[J]. Chest, 2020, 158(4): 1606-1616. DOI: 10.1016/j.chest.2020.04.043.
[15]
McDonald CM, Gordish-Dressman H, Henricson EK, et al. Longitudinal pulmonary function testing outcome measures in Duchenne muscular dystrophy: long-term natural history with and without glucocorticoids[J]. Neuromuscul Disord, 2018, 28(11): 897-909. DOI: 10.1016/j.nmd.2018.07.004.
[16]
Buckon C, Sienko S, Bagley A, et al. Can quantitative muscle strength and functional motor ability differentiate the influence of age and corticosteroids in ambulatory boys with Duchenne muscular dystrophy?[J]. PLoS Curr, 2016, 8: ecurrents.md.1ced64dff945f8958221fddcd4ee60b0. DOI: 10.1371/currents.md.1ced64dff945f8958221fddcd4ee60b0.
[17]
Meier T, Rummey C, Leinonen M, et al. Characterization of pulmonary function in 10-18 year old patients with Duchenne muscular dystrophy[J]. Neuromuscul Disord, 2017, 27(4): 307-314. DOI: 10.1016/j.nmd.2016.12.014.
[18]
Finder JD, Birnkrant D, Carl J, et al. Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement[J]. Am J Respir Crit Care Med, 2004, 170(4): 456-465. DOI: 10.1164/rccm.200307-885ST.
[19]
中华医学会罕见病分会,北京医学会罕见病分会. 抗肌萎缩蛋白病中国诊断指南 [J]. 中华医学杂志2024, 104(11): 822-833. DOI: 10.3760/cma.j.cn112137-20231217-01402.
[20]
Graham BL, Steenbruggen I, Miller MR, et al. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement[J]. Am J Respir Crit Care Med, 2019, 200(8): e70-e88. DOI: 10.1164/rccm.201908-1590ST.
[21]
Mendell JR, Sahenk Z, Lehman K, et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with Duchenne muscular dystrophy: a nonrandomized controlled trial[J]. JAMA Neurol, 2020, 77(9): 1122-1131. DOI: 10.1001/jamaneurol.2020.1484.
[22]
Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care[J]. Lancet Neurol, 2010, 9(2): 177-189. DOI: 10.1016/S1474-4422(09)70272-8.
[23]
Griggs RC. The use of pulmonary function testing as a quantitative measurement for therapeutic trials[J]. Muscle Nerve, 1990, 13 Suppl: S30-S34. DOI: 10.1002/mus.880131310.
[24]
Mayer OH, Finkel RS, Rummey C, et al. Characterization of pulmonary function in Duchenne muscular dystrophy[J]. Pediatr Pulmonol, 2015, 50(5): 487-494. DOI: 10.1002/ppul.23172.
[25]
Tangsrud S, Petersen IL, Lødrup Carlsen KC, et al. Lung function in children with Duchenne′s muscular dystrophy[J]. Respir Med, 2001, 95(11): 898-903. DOI: 10.1053/rmed.2001.1177.
[26]
Sawnani H, Horn PS, Wong B, et al. Comparison of pulmonary function decline in steroid-treated and steroid-Naïve patients with Duchenne muscular dystrophy[J]. J Pediatr, 2019, 210: 194-200.e2. DOI: 10.1016/j.jpeds.2019.02.037.
[27]
McDonald CM, Abresch RT, Carter GT, et al. Profiles of neuromuscular diseases. Duchenne muscular dystrophy[J]. Am J Phys Med Rehabil, 1995, 74(5 Suppl): S70-S92. DOI: 10.1097/00002060-199509001-00003.
[28]
Ricotti V, Selby V, Ridout D, et al. Respiratory and upper limb function as outcome measures in ambulant and non-ambulant subjects with Duchenne muscular dystrophy: a prospective multicentre study[J]. Neuromuscul Disord, 2019, 29(4): 261-268. DOI: 10.1016/j.nmd.2019.02.002.
[29]
McDonald CM, Henricson EK, Abresch RT, et al. Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: a prospective cohort study[J]. Lancet, 2018, 391(10119): 451-461. DOI: 10.1016/S0140-6736(17)32160-8.
[30]
Landfeldt E, Aleman A, Abner S, et al. Factors associated with respiratory health and function in Duchenne muscular dystrophy: a systematic review and evidence grading[J]. J Neuromuscul Dis, 2024, 11(1): 25-57. DOI: 10.3233/JND-230094.
[31]
Machado DL, Silva EC, Resende MB, et al. Lung function monitoring in patients with Duchenne muscular dystrophy on steroid therapy[J]. BMC Res Notes, 2012, 5: 435. DOI: 10.1186/1756-0500-5-435.
[32]
Miller NF, Alfano LN, Iammarino MA, et al. Natural history of steroid-treated young boys with Duchenne muscular dystrophy using the NSAA, 100m, and timed functional tests[J]. Pediatr Neurol, 2020, 113: 15-20. DOI: 10.1016/j.pediatrneurol.2020.08.013.
[33]
Thangarajh M, Bello L, Gordish-Dressman H, et al. Longitudinal motor function in proximal versus distal DMD pathogenic variants[J]. Muscle Nerve, 2021, 64(4): 467-473. DOI: 10.1002/mus.27371.
[34]
Kaslow JA, Sokolow AG, Donnelly T, et al. Spirometry correlates with physical activity in patients with Duchenne muscular dystrophy[J]. Pediatr Pulmonol, 2023, 58(4): 1034-1041. DOI: 10.1002/ppul.26289.
[35]
Luiz LC, Marson FAL, Bresciani Almeida CC, et al. Analysis of motor and respiratory function in Duchenne muscular dystrophy patients[J]. Respir Physiol Neurobiol, 2019, 262: 1-11. DOI: 10.1016/j.resp.2019.01.009.
[36]
Mayhew AG, Moat D, McDermott MP, et al. Functional outcome measures in young, steroid-naïve boys with Duchenne muscular dystrophy[J]. Neuromuscul Disord, 2022, 32(6): 460-467. DOI: 10.1016/j.nmd.2022.02.012.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[3] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[4] 丁荷蓓, 王珣, 陈为国. 七氟烷吸入麻醉与异丙酚静脉麻醉在儿童腹股沟斜疝手术中的应用比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 570-574.
[5] 沈琪乐, 赵勤华, 宫素岗, 刘锦铭, 王岚, 邱宏玲. COPD 稳定期患者血清CC16 蛋白表达与肺功能、肺气肿表型的关系分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 690-695.
[6] 杨莎莎, 张毛为, 孙宜田, 刘亚南, 位娟, 魏建, 陈碧. 结缔组织疾病相关间质性肺病并发小气道功能障碍临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 738-743.
[7] 郭璟琪, 魏明言, 刘芳, 李冬凌, 关金平, 李立华. 乙酰半胱氨酸治疗慢性阻塞性肺疾病急性加重期的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 768-772.
[8] 刘雯, 赵明栋, 夏伟, 潘以雄. 不同剂量比阿培南治疗重症肺炎的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 789-792.
[9] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[10] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[11] 张洪, 杨琪, 罗静, 唐茜, 邓鸿, 巩文艳, 王丽坤, 刘静, 艾双春. 多靶点神经调控技术对卒中后上肢运动功能障碍患者的脑网络功能连接研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 278-284.
[12] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[13] 闫维, 张二明, 张克, 安欣华, 向平超. 北京市石景山区40岁及以上居民早期慢性阻塞性肺疾病异质性及影响因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 533-540.
[14] 陈晓胜, 何佳, 刘方, 吴蕊, 杨海涛, 樊晓寒. 直立倾斜试验诱发31 秒心脏停搏的植入心脏起搏器儿童一例并文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 488-494.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?