[1] |
|
[2] |
Crisafulli S, Sultana J, Fontana A, et al. Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and Meta-analysis[J]. Orphanet J Rare Dis, 2020, 15(1): 141. DOI: 10.1186/s13023-020-01430-8.
|
[3] |
Zhang T, Kong X. Recent advances of glucocorticoids in the treatment of Duchenne muscular dystrophy[J]. Exp Ther Med, 2021, 21(5): 447. DOI: 10.3892/etm.2021.9875.
|
[4] |
Wong T, Ahmed A, Yang G, et al. A novel mouse model of Duchenne muscular dystrophy carrying a multi-exonic DMD deletion exhibits progressive muscular dystrophy and early-onset cardiomyopathy[J]. Dis Model Mech, 2020, 13(9): dmm045369. DOI: 10.1242/dmm.045369.
|
[5] |
|
[6] |
Hoffman EP. The discovery of dystrophin, the protein product of the Duchenne muscular dystrophy gene[J]. FEBS J, 2020, 287(18): 3879-3887. DOI: 10.1111/febs.15466.
|
[7] |
Hrach HC, Mangone M. miRNA profiling for early detection and treatment of Duchenne muscular dystrophy[J]. Int J Mol Sci, 2019, 20(18): 4638. DOI: 10.3390/ijms20184638.
|
[8] |
Zepeda-Mendoza CJ, Bontrager JE, Fisher CF, et al. Molecular characterization and reclassification of a 1.18 Mbp DMD duplication following positive carrier screening for Duchenne/Becker muscular dystrophy[J]. Clin Case Rep, 2022, 10(7): e6008. DOI: 10.1002/ccr3.6008.
|
[9] |
Wonkam-Tingang E, Nguefack S, Esterhuizen AI, et al. DMD-related muscular dystrophy in Cameroon: clinical and genetic profiless[J]. Mol Genet Genomic Med, 2020, 8(8): e1362. DOI: 10.1002/mgg3.1362.
|
[10] |
Wagner KR, Guglieri M, Ramaiah SK, et al. Safety and disease monitoring biomarkers in Duchenne muscular dystrophy: results from a phase Ⅱ trial[J]. Biomark Med, 2021, 15(15): 1389-1396. DOI: 10.2217/bmm-2021-0222.
|
[11] |
|
[12] |
Lori S, Lolli F, Molesti E, et al. Muscle-ultrasound evaluation in healthy pediatric subjects: age-related normative data[J]. Muscle Nerve, 2018, 58(2): 245-250. DOI: 10.1002/mus.26151.
|
[13] |
Wijntjes J, van Alfen N. Muscle ultrasound: present state and future opportunities[J]. Muscle Nerve, 2021, 63(4): 455-466. DOI: 10.1002/mus.27081.
|
[14] |
de Leeuw C, Wijntjes J, Lassche S, et al. Nerve ultrasound for distinguishing inflammatory neuropathy from amyotrophic lateral sclerosis: not black and white[J]. Muscle Nerve, 2020, 61(6): E33-E37. DOI: 10.1002/mus.26853.
|
[15] |
Bulut N, Karaduman A, Alemdaroĝlu-Gürbüz I, et al. Ultrasonographic assessment of lower limb muscle architecture in children with early-stage Duchenne muscular dystrophy[J]. Arq Neuropsiquiatr, 2022, 80(5): 475-481. DOI: 10.1590/0004-282X-ANP-2021-0038.
|
[16] |
Vill K, Sehri M, Müller C, et al. Qualitative and quantitative muscle ultrasound in patients with Duchenne muscular dystrophy: where do sonographic changes begin[J]. Eur J Paediatr Neurol, 2020, 28: 142-150. DOI: 10.1016/j.ejpn.2020.06.001.
|
[17] |
Abdulhady H, Sakr HM, Elsayed NS, et al. Ambulatory Duchenne muscular dystrophy children: cross-sectional correlation between function, quantitative muscle ultrasound and MRI[J]. Acta Myol, 2022, 41(1): 1-14. DOI: 10.36185/2532-1900-063.
|
[18] |
Ozturk A, Grajo JR, Dhyani M, et al. Principles of ultrasound elastography[J]. Abdom Radiol (NY), 2018, 43(4): 773-785. DOI: 10.1007/s00261-018-1475-6.
|
[19] |
Cui XW, Li KN, Yi AJ, et al. Ultrasound elastography[J]. Endosc Ultrasound, 2022, 11(4): 252-274. DOI: 10.4103/EUS-D-21-00151.
|
[20] |
|
[21] |
Hanquinet S, Habre C, Laurent M, et al. Acoustic radiation force impulse imaging: normal values of spleen stiffness in healthy children[J]. Pediatr Radiol, 2021, 51(10): 1873-1878. DOI: 10.1007/s00247-021-05079-8.
|
[22] |
Kyriakidou G, Friedrich-Rust M, Bon D, et al. Comparison of strainelastography, point shear wave elastography using acoustic radiation force impulse imaging and 2D-shear wave elastography for the differentiation of thyroid nodules[J]. PLoS One, 2018, 13(9): e0204095. DOI: 10.1371/journal.pone.0204095.
|
[23] |
Romano A, Staber D, Grimm A, et al. Limitations of muscle ultrasound shear wave elastography for clinical routine-positioning and muscle selection[J]. Sensors (Basel), 2021, 21(24): 8490. DOI: 10.3390/s21248490.
|
[24] |
Öztürk M, ÇalIşkan E, Habibi HA. Shear wave elastography of temporomandibular joint disc and masseter muscle stiffness in healthy children and adolescents: a preliminary study[J]. Oral Radiol, 2021, 37(4): 618-624. DOI: 10.1007/s11282-020-00501-7.
|
[25] |
Lin CW, Tsui PH, Lu CH, et al. Quantifying lower limb muscle stiffness as ambulation function declines in Duchenne muscular dystrophy with acoustic radiation force impulse shear wave elastography[J]. Ultrasound Med Biol, 2021, 47(10): 2880-2889. DOI: 10.1016/j.ultrasmedbio.2021.06.008.
|
[26] |
Berko NS, Fitzgerald EF, Amaral TD, et al. Ultrasound elastography in children: establishing the normal range of muscle elasticity[J]. Pediatr Radiol, 2014, 44(2): 158-163. DOI: 10.3390/ijerph18189619.
|
[27] |
Lallemant-Dudek P, Vergari C, Dubois G, et al. Ultrasound shearwave elastography to characterize muscles of healthy and cerebral palsy children[J]. Sci Rep, 2021, 11(1): 3577. DOI: 10.1038/s41598-021-82005-w.
|
[28] |
Goo M, Johnston LM, Hug F, et al. Systematic review of instrumented measures of skeletal muscle mechanical properties: evidence for the application of shear wave elastography with children[J]. Ultrasound Med Biol, 2020, 46(8): 1831-1840. DOI: 10.1016/j.ultrasmedbio.2020.04.009.
|
[29] |
Lacourpaille L, Gross R, Hug F, et al. Effects of Duchenne muscular dystrophy on muscle stiffness and response to electrically-induced muscle contraction: a 12-month follow-up[J]. Neuromuscul Disord, 2017, 27(3): 214-220. DOI: 10.1016/j.nmd.2017.01.001.
|
[30] |
Yu HK, Liu X, Pan M, et al. Performance of passive muscle stiffness in diagnosis and assessment of disease progression in Duchenne muscular dystrophy[J]. Ultrasound Med Biol, 2022, 48(3): 414-421. DOI: 10.1016/j.ultrasmedbio.2021.09.003.
|