[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
[2] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.
|
[3] |
Zhang J, Cai L, Chen L, et al. Re-evaluation of high-risk breast mammography lesions by target ultrasound and ABUS of breast non-mass-like lesions[J]. BMC Med Imaging, 2021, 21(1): 156. DOI: 10.1186/s12880-021-00665-6.
|
[4] |
Zhang W, Xiao X, Xu X, et al. Non-mass breast lesions on ultrasound: feature exploration and multimode ultrasonic diagnosis[J]. Ultrasound Med Biol, 2018, 44(8): 1703-1711. DOI: 10.1016/j.ultrasmedbio.2018.05.005.
|
[5] |
Moschetta M, Sardaro A, Nitti A, et al. Ultrasound evaluation of ductal carcinoma in situ of the breast[J]. J Ultrasound, 2022, 25(1): 41-45. DOI: 10.1007/s40477-020-00551-x.
|
[6] |
|
[7] |
Clemenceau A, Michou L, Diorio C, et al. Breast cancer and microcalcifications: an osteoimmunological disorder?[J]. Int J Mol Sci, 2020, 21(22): 8613. DOI: 10.3390/ijms21228613.
|
[8] |
O′Grady S, Morgan MP. Microcalcifications in breast cancer: from pathophysiology to diagnosis and prognosis[J]. Biochim Biophys Acta Rev Cancer, 2018, 1869(2): 310-320. DOI: 10.1016/j.bbcan.2018.04.006.
|
[9] |
Kwon BR, Chang JM, Kim SY, et al. Utility and diagnostic performance of automated breast ultrasound system in evaluating pure non-mass enhancement on breast magnetic resonance imaging[J]. Korean J Radiol, 2020, 21(11): 1210-1219. DOI: 10.3348/kjr.2019.0881.
|
[10] |
Li JK, Wang HF, He Y, et al. Ultrasonographic features of ductal carcinoma in situ: analysis of 219 lesions[J]. Gland Surg, 2020, 9(6): 1945-1954. DOI: 10.21037/gs-20-428.
|
[11] |
Hrkac Pustahija A, Ivanac G, Brkljacic B. US and MRI in the evaluation of mammographic BI-RADS 4 and 5 microcalcifications[J]. Diagn Interv Radiol, 2018, 24(4): 187-194. DOI: 10.5152/dir.2018.17414.
|
[12] |
Park KW, Park S, Shon I, et al. Non-mass lesions detected by breast US: stratification of cancer risk for clinical management[J]. Eur Radiol, 2021, 31(3): 1693-1706. DOI: 10.1007/s00330-020-07168-y.
|
[13] |
Kim HR, Jung HK. Histopathology findings of non-mass cancers on breast ultrasound[J]. Acta Radiol Open, 2018, 7(6): 2058460118774957. DOI: 10.1177/2058460118774957.
|
[14] |
Vourtsis A, Kachulis A. The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1,886 women[J]. Eur Radiol, 2018, 28(2): 592-601. DOI: 10.1007/s00330-017-5011-9.
|
[15] |
Choudhery S, Polley E, Conners AL. Assessment of MRI-detected lesions on screening tomosynthesis in patients with newly diagnosed breast cancer[J]. Clin Imaging, 2020, 59(1): 50-55. DOI: 10.1016/j.clinimag.2019.09.007.
|
[16] |
Amitai Y, Scaranelo A, Menes TS, et al. Can breast MRI accurately exclude malignancy in mammographic architectural distortion?[J]. Eur Radiol, 2020, 30(5): 2751-2760. DOI: 10.1007/s00330-019-06586-x.
|
[17] |
Chen M, Fu X, Shen Y. Evaluation of multimode color Doppler flow imaging in the diagnosis of solid renal tumor[J]. Contrast Media Mol Imaging, 2021, 2021: 6656877. DOI: 10.1155/2021/6656877.
|
[18] |
Zhang F, Jin L, Li G, et al. The role of contrast-enhanced ultrasound in the diagnosis of malignant non-mass breast lesions and exploration of diagnostic criteria[J]. Br J Radiol, 2021, 94(1120): 20200880. DOI: 10.1259/bjr.20200880.
|
[19] |
Liang X, Li Z, Zhang L, et al. Application of contrast-enhanced ultrasound in the differential diagnosis of different molecular subtypes of breast cancer[J]. Ultrason Imaging, 2020, 42(6): 261-270. DOI: 10.1177/0161734620959780.
|
[20] |
Xu P, Yang M, Liu Y, et al. Breast non-mass-like lesions on contrast-enhanced ultrasonography: feature analysis, breast image reporting and data system classification assessment[J]. World J Clin Cases, 2020, 8(4): 700-712. DOI: 10.12998/wjcc.v8.i4.700.
|
[21] |
Liu W, Zong M, Gong HY, et al. Comparison of diagnostic efficacy between contrast-enhanced ultrasound and DCE-MRI for mass- and non-mass-like enhancement types in breast lesions[J]. Cancer Manag Res, 2020, 12: 13567-13578. DOI: 10.2147/CMAR.S283656.
|
[22] |
Suvannarerg V, Chitchumnong P, Apiwat W, et al. Diagnostic performance of qualitative and quantitative shear wave elastography in differentiating malignant from benign breast masses, and association with the histological prognostic factors[J]. Quant Imaging Med Surg, 2019, 9(3): 386-398. DOI: 10.21037/qims.2019.03.04.
|
[23] |
Luo T, Zhang JW, Zhu Y, et al. Virtual touch imaging quantification shear-wave elastography for breast lesions: the diagnostic value of qualitative and quantitative features[J]. Clin Radiol, 2021, 76(4): 316.e1-316.e8. DOI: 10.1016/j.crad.2020.10.016.
|
[24] |
|
[25] |
Qu XX, Song Y, Zhang YH, et al. Value of ultrasonic elastography and conventional ultrasonography in the differential diagnosis of non-mass-like breast lesions[J]. Ultrasound Med Biol, 2019, 45(6): 1358-1366. DOI: 10.1016/j.ultrasmedbio.2019.01.020.
|
[26] |
Jiang H, Yu X, Zhang L, et al. Diagnostic values of shear wave elastography and strain elastography for breast lesions[J]. Rev Med Chil, 2020, 148(9): 1239-1245. DOI: 10.4067/S0034-98872020000901239.
|
[27] |
Seo M, Ahn HS, Park SH, et al. Comparison and combination of strain and shear wave elastography of breast masses for differentiation of benign and malignant lesions by quantitative assessment: preliminary study[J]. J Ultrasound Med, 2018, 37(1): 99-109. DOI: 10.1002/jum.14309.
|
[28] |
|
[29] |
侯曼曼,王少春,张天义,等. 剪切波弹性成像对非肿块型乳腺病变良恶性的诊断价值[J]. 医学影像学杂志,2020, 30(5): 776-779, 783.
|
[30] |
Sefidbakht S, Haseli S, Khalili N, et al. Can shear wave elastography be utilized as an additional tool for the assessment of non-mass breast lesions?[J]. Ultrasound, 2022, 30(1): 44-51. DOI: 10.1177/1742271X21998721.
|
[31] |
Xu P, Wu M, Yang M, et al. Evaluation of internal and shell stiffness in the differential diagnosis of breast non-mass lesions by shear wave elastography[J]. World J Clin Cases, 2020, 8(12): 2510-2519. DOI: 10.12998/wjcc.v8.i12.2510.
|
[32] |
Aslan H, Pourbagher A, Ozen M. The role of shear-wave elastography in the differentiation of benign and malign non-mass lesions of the breast[J]. Ann Ital Chir, 2018, 89: 385-391.
|
[33] |
Wang J, Fan H, Zhu Y, et al. The value of automated breast volume scanner combined with virtual touch tissue quantification in the differential diagnosis of benign and malignant breast lesions: a comparative study with mammography[J]. Medicine (Baltimore), 2021, 100(16): e25568. DOI: 10.1097/MD.0000000000025568.
|
[34] |
Tang G, An X, Xiang H, et al. Automated breast ultrasound: interobserver agreement, diagnostic value, and associated clinical factors of coronal-plane image features[J]. Korean J Radiol, 2020, 21(5): 550-560. DOI: 10.3348/kjr.2019.0525.
|
[35] |
Zhang X, Chen J, Zhou Y, et al. Diagnostic value of an automated breast volume scanner compared with a hand-held ultrasound: a Meta-analysis[J]. Gland Surg, 2019, 8(6): 698-711. DOI: 10.21037/gs.2019.11.18.
|
[36] |
Liu J, Zhou Y, Wu J, et al. Diagnostic performance of combined use of automated breast volume scanning & hand-held ultrasound for breast lesions[J]. Indian J Med Res, 2021, 154(2): 347-354. DOI: 10.4103/ijmr.IJMR_836_19.
|