切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (04) : 379 -386. doi: 10.3877/cma.j.issn.1673-5250.2022.04.002

专题论坛

超声筛查乳腺恶性非肿块型病变的研究现状
唐燕, 谷颖()   
  1. 贵州医科大学影像学院,贵阳 550004
  • 收稿日期:2022-02-01 修回日期:2022-07-10 出版日期:2022-08-01
  • 通信作者: 谷颖

Current research status of breast malignant non-mass lesion by ultrasound screening

Yan Tang, Ying Gu()   

  1. College of Imaging, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
  • Received:2022-02-01 Revised:2022-07-10 Published:2022-08-01
  • Corresponding author: Ying Gu
  • Supported by:
    Science and Technology Project of Guizhou Provincial Health Commission(gzwkj2021-377)
引用本文:

唐燕, 谷颖. 超声筛查乳腺恶性非肿块型病变的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(04): 379-386.

Yan Tang, Ying Gu. Current research status of breast malignant non-mass lesion by ultrasound screening[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(04): 379-386.

目前全球乳腺癌发病率位居女性恶性肿瘤首位。早筛查、早诊断可有效提高乳腺癌患者总体生存率,改善其预后。超声检查是目前国内乳腺癌筛查的重要手段之一。乳腺恶性非肿块型病变(NML)因边缘模糊、无明显占位效应,而容易被乳腺超声检查漏诊或误诊。针对乳腺恶性NML的超声诊断,目前临床主要诊断技术包括以下几种。①二维超声可清晰显示乳腺恶性NML低回声区、微钙化、增粗扩张导管及结构扭曲(AD)等;②彩色多普勒血流显像(CDFI),可见乳腺恶性NML内丰富血流信号;③超声造影(CEUS)不仅可通过造影剂反映乳腺恶性NML的微血管灌注情况,还能与乳腺影像和报告数据系统(BI-RADS)分类结合,提高诊断乳腺恶性NML效能,降低诊断性组织病理学活检率;④超声弹性成像可定性、定量反映乳腺恶性NML与周围组织弹性差异;⑤乳腺超声自动乳腺全容积成像(ABVS)基于独特的冠状面特征图像,可更加敏感地反映乳腺恶性NML与正常乳腺组织的结构差异;⑥对上述5种超声技术进行联合的多模态超声技术,可有效提高对乳腺良、恶性NML患者的鉴别诊断效能,降低对乳腺恶性NML的漏诊与误诊率。笔者拟就乳腺二维超声、CDFI、CEUS、超声弹性成像、ABVS,以及上述5种超声技术联合的多模态超声技术,在乳腺恶性NML筛查中的应用研究最新进展进行阐述。

Breast cancer is top 1 of malignant tumor of women worldwide now. Early screening and diagnosis can effectively make improvements for overall survival rate of breast cancer patients and improve their prognosis. Ultrasound is a widely used detection method for breast cancer screening in China. Non-mass lesion (NML) is prone to clinical omission or misdiagnosis due to blurred edges without obvious mass effects, which is one of difficulties of breast ultrasound in diagnosis of breast malignant NML. For diagnosis of breast malignant NML, there are a variety of ultrasonic diagnosis techniques as the following. ① Breast two-dimensional ultrasound is used clinically to show low echo area of malignant NML without obvious occupancy effects, micro calcification of lesions tissue, coarse expansion of catheters and architectural distortion (AD). ② Malignant NML often presents as a rich blood flow signal on color doppler flow imaging (CDFI). ③ Contrast-enhanced ultrasound (CEUS) can not only reflect perfusion of malignant NML microvascular through contrast agents, but also can be combined with breast imaging and report data system (BI-RADS) classification to improve diagnostic efficiency of breast malignant NML and reduce diagnostic biopsy ratio. ④ Ultrasonic elastography can show qualitatively and quantitatively reflect elastic differences between breast malignant NML and its surrounding tissue. ⑤ Automated breast volume scanner (ABVS) of unique images of coronal features can more sensitively reflect structural differences between malignant NML of mammary gland and normal breast tissue. ⑥ The combination of a variety of the above five ultrasound technologies to form multimodal ultrasound technology can effectively improve diagnosis efficiency of breast malignant NML. The author intends to expound the latest research progresses of breast two-dimensional ultrasound, CDFI, CEUS, ultrasound elastography, ABVS, and combination of the above five ultrasonic examination techniques to form multimodal ultrasound technology in screening of breast malignant NML of mammary gland.

图1 2020年全球女性癌症新发患者与死亡患者数量前10位的癌症类型[1](图1A:新发患者数量前10位的癌症类型;图1B:死亡患者数量前10位的癌症类型)
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.
[3]
Zhang J, Cai L, Chen L, et al. Re-evaluation of high-risk breast mammography lesions by target ultrasound and ABUS of breast non-mass-like lesions[J]. BMC Med Imaging, 2021, 21(1): 156. DOI: 10.1186/s12880-021-00665-6.
[4]
Zhang W, Xiao X, Xu X, et al. Non-mass breast lesions on ultrasound: feature exploration and multimode ultrasonic diagnosis[J]. Ultrasound Med Biol, 2018, 44(8): 1703-1711. DOI: 10.1016/j.ultrasmedbio.2018.05.005.
[5]
Moschetta M, Sardaro A, Nitti A, et al. Ultrasound evaluation of ductal carcinoma in situ of the breast[J]. J Ultrasound, 2022, 25(1): 41-45. DOI: 10.1007/s40477-020-00551-x.
[6]
杨敏,罗静,李晶,等. 非肿块型乳腺癌超声影像学特点与病理相关性分析[J]. 中华普通外科杂志2020, 35(7): 571-572. DOI: 10.3760/cma.j.cn113855-20190924-00566.
[7]
Clemenceau A, Michou L, Diorio C, et al. Breast cancer and microcalcifications: an osteoimmunological disorder?[J]. Int J Mol Sci, 2020, 21(22): 8613. DOI: 10.3390/ijms21228613.
[8]
O′Grady S, Morgan MP. Microcalcifications in breast cancer: from pathophysiology to diagnosis and prognosis[J]. Biochim Biophys Acta Rev Cancer, 2018, 1869(2): 310-320. DOI: 10.1016/j.bbcan.2018.04.006.
[9]
Kwon BR, Chang JM, Kim SY, et al. Utility and diagnostic performance of automated breast ultrasound system in evaluating pure non-mass enhancement on breast magnetic resonance imaging[J]. Korean J Radiol, 2020, 21(11): 1210-1219. DOI: 10.3348/kjr.2019.0881.
[10]
Li JK, Wang HF, He Y, et al. Ultrasonographic features of ductal carcinoma in situ: analysis of 219 lesions[J]. Gland Surg, 2020, 9(6): 1945-1954. DOI: 10.21037/gs-20-428.
[11]
Hrkac Pustahija A, Ivanac G, Brkljacic B. US and MRI in the evaluation of mammographic BI-RADS 4 and 5 microcalcifications[J]. Diagn Interv Radiol, 2018, 24(4): 187-194. DOI: 10.5152/dir.2018.17414.
[12]
Park KW, Park S, Shon I, et al. Non-mass lesions detected by breast US: stratification of cancer risk for clinical management[J]. Eur Radiol, 2021, 31(3): 1693-1706. DOI: 10.1007/s00330-020-07168-y.
[13]
Kim HR, Jung HK. Histopathology findings of non-mass cancers on breast ultrasound[J]. Acta Radiol Open, 2018, 7(6): 2058460118774957. DOI: 10.1177/2058460118774957.
[14]
Vourtsis A, Kachulis A. The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1,886 women[J]. Eur Radiol, 2018, 28(2): 592-601. DOI: 10.1007/s00330-017-5011-9.
[15]
Choudhery S, Polley E, Conners AL. Assessment of MRI-detected lesions on screening tomosynthesis in patients with newly diagnosed breast cancer[J]. Clin Imaging, 2020, 59(1): 50-55. DOI: 10.1016/j.clinimag.2019.09.007.
[16]
Amitai Y, Scaranelo A, Menes TS, et al. Can breast MRI accurately exclude malignancy in mammographic architectural distortion?[J]. Eur Radiol, 2020, 30(5): 2751-2760. DOI: 10.1007/s00330-019-06586-x.
[17]
Chen M, Fu X, Shen Y. Evaluation of multimode color Doppler flow imaging in the diagnosis of solid renal tumor[J]. Contrast Media Mol Imaging, 2021, 2021: 6656877. DOI: 10.1155/2021/6656877.
[18]
Zhang F, Jin L, Li G, et al. The role of contrast-enhanced ultrasound in the diagnosis of malignant non-mass breast lesions and exploration of diagnostic criteria[J]. Br J Radiol, 2021, 94(1120): 20200880. DOI: 10.1259/bjr.20200880.
[19]
Liang X, Li Z, Zhang L, et al. Application of contrast-enhanced ultrasound in the differential diagnosis of different molecular subtypes of breast cancer[J]. Ultrason Imaging, 2020, 42(6): 261-270. DOI: 10.1177/0161734620959780.
[20]
Xu P, Yang M, Liu Y, et al. Breast non-mass-like lesions on contrast-enhanced ultrasonography: feature analysis, breast image reporting and data system classification assessment[J]. World J Clin Cases, 2020, 8(4): 700-712. DOI: 10.12998/wjcc.v8.i4.700.
[21]
Liu W, Zong M, Gong HY, et al. Comparison of diagnostic efficacy between contrast-enhanced ultrasound and DCE-MRI for mass- and non-mass-like enhancement types in breast lesions[J]. Cancer Manag Res, 2020, 12: 13567-13578. DOI: 10.2147/CMAR.S283656.
[22]
Suvannarerg V, Chitchumnong P, Apiwat W, et al. Diagnostic performance of qualitative and quantitative shear wave elastography in differentiating malignant from benign breast masses, and association with the histological prognostic factors[J]. Quant Imaging Med Surg, 2019, 9(3): 386-398. DOI: 10.21037/qims.2019.03.04.
[23]
Luo T, Zhang JW, Zhu Y, et al. Virtual touch imaging quantification shear-wave elastography for breast lesions: the diagnostic value of qualitative and quantitative features[J]. Clin Radiol, 2021, 76(4): 316.e1-316.e8. DOI: 10.1016/j.crad.2020.10.016.
[24]
刘芳欣,郑慧,王洲. 声触诊弹性成像定量技术及超声造影在鉴别诊断乳腺非肿块型良恶性病变中的应用价值[J].安徽医科大学学报2019, 54(2): 286-291. DOI: 10.19405/j.cnki.issn1000-1492.2019.02.025.
[25]
Qu XX, Song Y, Zhang YH, et al. Value of ultrasonic elastography and conventional ultrasonography in the differential diagnosis of non-mass-like breast lesions[J]. Ultrasound Med Biol, 2019, 45(6): 1358-1366. DOI: 10.1016/j.ultrasmedbio.2019.01.020.
[26]
Jiang H, Yu X, Zhang L, et al. Diagnostic values of shear wave elastography and strain elastography for breast lesions[J]. Rev Med Chil, 2020, 148(9): 1239-1245. DOI: 10.4067/S0034-98872020000901239.
[27]
Seo M, Ahn HS, Park SH, et al. Comparison and combination of strain and shear wave elastography of breast masses for differentiation of benign and malignant lesions by quantitative assessment: preliminary study[J]. J Ultrasound Med, 2018, 37(1): 99-109. DOI: 10.1002/jum.14309.
[28]
丰波,黄巧燕,罗晴霞,等. 超声弹性成像比值法在乳腺非肿块型病变良恶性鉴别诊断中的应用研究[J]. 中国超声医学杂志2020, 36(6): 499-502. DOI: 10.3969/j.issn.1002-0101.2020.06.006.
[29]
侯曼曼,王少春,张天义,等. 剪切波弹性成像对非肿块型乳腺病变良恶性的诊断价值[J]. 医学影像学杂志2020, 30(5): 776-779, 783.
[30]
Sefidbakht S, Haseli S, Khalili N, et al. Can shear wave elastography be utilized as an additional tool for the assessment of non-mass breast lesions?[J]. Ultrasound, 2022, 30(1): 44-51. DOI: 10.1177/1742271X21998721.
[31]
Xu P, Wu M, Yang M, et al. Evaluation of internal and shell stiffness in the differential diagnosis of breast non-mass lesions by shear wave elastography[J]. World J Clin Cases, 2020, 8(12): 2510-2519. DOI: 10.12998/wjcc.v8.i12.2510.
[32]
Aslan H, Pourbagher A, Ozen M. The role of shear-wave elastography in the differentiation of benign and malign non-mass lesions of the breast[J]. Ann Ital Chir, 2018, 89: 385-391.
[33]
Wang J, Fan H, Zhu Y, et al. The value of automated breast volume scanner combined with virtual touch tissue quantification in the differential diagnosis of benign and malignant breast lesions: a comparative study with mammography[J]. Medicine (Baltimore), 2021, 100(16): e25568. DOI: 10.1097/MD.0000000000025568.
[34]
Tang G, An X, Xiang H, et al. Automated breast ultrasound: interobserver agreement, diagnostic value, and associated clinical factors of coronal-plane image features[J]. Korean J Radiol, 2020, 21(5): 550-560. DOI: 10.3348/kjr.2019.0525.
[35]
Zhang X, Chen J, Zhou Y, et al. Diagnostic value of an automated breast volume scanner compared with a hand-held ultrasound: a Meta-analysis[J]. Gland Surg, 2019, 8(6): 698-711. DOI: 10.21037/gs.2019.11.18.
[36]
Liu J, Zhou Y, Wu J, et al. Diagnostic performance of combined use of automated breast volume scanning & hand-held ultrasound for breast lesions[J]. Indian J Med Res, 2021, 154(2): 347-354. DOI: 10.4103/ijmr.IJMR_836_19.
[1] 吕琦, 惠品晶, 丁亚芳, 颜燕红. 颈动脉斑块易损性的超声造影评估及与缺血性卒中的相关性研究[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1040-1045.
[2] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[3] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[4] 丁雷, 罗文, 杨晓, 庞丽娜, 张佩蒂, 刘海静, 袁佳妮, 刘瑾. 高帧频超声造影在评价C-TIRADS 4-5类甲状腺结节成像特征中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(09): 887-894.
[5] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[6] 朱连华, 费翔, 韩鹏, 姜波, 李楠, 罗渝昆. 高帧频超声造影在胆囊息肉样病变中的鉴别诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 904-910.
[7] 李淼, 朱连华, 韩鹏, 姜波, 费翔. 高帧频超声造影评价肝细胞癌血管形态与风险因素的研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 911-915.
[8] 张卫平, 王婧玲, 刘志兴, 陈莉, 谌芳群. 肾透明细胞癌高帧频超声造影时间-强度曲线特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 916-922.
[9] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[10] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[11] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[12] 刘嘉嘉, 王承华, 陈绪娇, 刘瑗玲, 王善钰, 屈海花, 张莉. 经阴道子宫-输卵管实时三维超声造影中患者疼痛发生情况及其影响因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 959-965.
[13] 陈舜, 薛恩生, 叶琴. PDCA在持续改进超声危急值管理制度中的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 974-978.
[14] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[15] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
阅读次数
全文


摘要