[14] |
Siegel B, Olivieri L, Gordish-Dressman H, et al. Myocardial strain using cardiac MR feature tracking and speckle tracking echocardiography in duchenne muscular dystrophy patients[J]. Pediatr Cardiol, 2018, 39(3): 478-483. DOI: 10.1007/s00246-017-1777-4.
|
[15] |
Callegari A, Marcora S, Burkhardt B, et al. Myocardial deformation in Fontan patients asssessed by cardiac magnetic resonance feature tracking: correlation with function, clinical course, and biomarkers[J]. Pediatr Cardiol, 2021, 42(7): 1625-1634. DOI: 10.1007/s00246-021-02650-w.
|
[16] |
Biko DM, Collins RT, Partington SL, et al. Magnetic resonance myocardial perfusion imaging: safety and indications in pediatrics and young adults[J]. Pediatr Cardiol, 2018, 39(2): 275-282. DOI: 10.1007/s00246-017-1752-0.
|
[17] |
Scannell CM, Hasaneen H, Greil G, et al. Automated quantitative stress perfusion cardiac magnetic resonance in pediatric patients[J]. Front Pediatr, 2021, 9: 699497. DOI: 10.3389/fped.2021.699497.
|
[18] |
Fares M, Critser PJ, Arruda MJ, et al. Pharmacologic stress cardiovascular magnetic resonance in the pediatric population: a review of the literature, proposed protocol, and two examples in patients with Kawasaki disease[J]. Congenit Heart Dis, 2019, 14(6): 1166-1175. DOI: 10.1111/chd.12840.
|
[19] |
Etesami M, Gilkeson RC, Rajiah P. Utility of late gadolinium enhancement in pediatric cardiac MRI[J]. Pediatr Radiol, 2016, 46(8): 1096-113. DOI: 10.1007/s00247-015-3526-2.
|
[20] |
Martins DS, Ait-Ali L, Khraiche D, et al. Evolution of acute myocarditis in a pediatric population: an MRI based study[J]. Int J Cardiol, 2021, 329: 226-233. DOI: 10.1016/j.ijcard.2020.12.052.
|
[21] |
Silva MC, Magalhães TA, Meira ZM, et al. Myocardial fibrosis progression in Duchenne and Becker Muscular Dystrophy: a randomized clinical trial[J]. JAMA Cardiol, 2017, 2(2): 190-199. DOI: 10.1001/jamacardio.2016.4801.
|
[22] |
Andrade Gomes HJ, de Padua Vieira Alves V, Nacif MS. The value of T1 mapping techniques in the assessment of myocardial interstitial fibrosis[J]. Magn Reson Imaging Clin N Am, 2019, 27(3): 563-574. DOI: 10.1016/j.mric.2019.04.007.
|
[23] |
Riesenkampff E, Messroghli DR, Redington AN, et al. Myocardial T1 mapping in pediatric and congenital heart disease[J]. Circ Cardiovasc Imaging, 2015, 8(2): e002504. DOI: 10.1161/CIRCIMAGING.114.002504.
|
[24] |
Yim D, Riesenkampff E, Caro-Dominguez P, et al. Assessment of diffuse ventricular myocardial fibrosis using native T1 in children with repaired tetralogy of Fallot[J]. Circ Cardiovasc Imaging, 2017, 10(3): e005695. DOI: 10.1161/CIRCIMAGING.116.005695.
|
[25] |
Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert Recommendations[J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072.
|
[26] |
Jia H, Guo J, Liu B, et al. Diagnostic value of 3.0 T cardiac MRI in children with suspected myocarditis: multi-parameter analysis for the evaluation of acute and chronic myocarditis[J]. Acta Radiol, 2020, 61(9): 1249-1257. DOI: 10.1177/0284185119900434.
|
[27] |
Cornicelli MD, Rigsby CK, Rychlik K, et al. Diagnostic performance of cardiovascular magnetic resonance native T1 and T2 mapping in pediatric patients with acute myocarditis[J]. J Cardiovasc Magn Reson, 2019, 15, 21(1): 40. DOI: 10.1186/s12968-019-0550-7.
|
[28] |
Sethi N, Doshi A, Doshi T, et al. Quantitative cardiac magnetic resonance T2 imaging offers ability to non-invasively predict acute allograft rejection in children[J]. Cardiol Young, 2020, 30(6): 852-859. DOI: 10.1017/S104795112000116X.
|
[29] |
|
[30] |
Bunck AC, Baeßler B, Ritter C, et al. Structured reporting in cross-sectional imaging of the heart: reporting templates for CMR imaging of cardiomyopathies (myocarditis, dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and siderosis)[J]. Rofo, 2020, 192(1): 27-37. DOI: 10.1055/a-0998-4116.
|
[31] |
Chow EJ, Leger KJ, Bhatt NS, et al. Paediatric cardio-oncology: epidemiology, screening, prevention, and treatment[J]. Cardiovasc Res, 2019, 115(5): 922-934. DOI: 10.1093/cvr/cvz031.
|
[32] |
Blondiaux E, Parisot P, Redheuil A, et al. Cardiac MRI in children with multisystem inflammatory syndrome associated with COVID-19[J]. Radiology, 2020, 297(3): E283-E288. DOI: 10.1148/radiol.2020202288.
|
[33] |
Power LC, O′Grady GL, Hornung TS, et al. Imaging the heart to detect cardiomyopathy in Duchenne muscular dystrophy: a review[J]. Neuromuscul Disord, 2018, 28(9): 717-730. DOI: 10.1016/j.nmd.2018.05.011.
|
[34] |
Schäfer M, Nadeau KJ, Reusch JEB. Cardiovascular disease in young people with type 1 diabetes: search for cardiovascular biomarkers[J]. J Diabetes Complications, 2020, 34(10): 107651. DOI: 10.1016/j.jdiacomp.2020.107651.
|
[35] |
Zou Q, Xu HY, Fu C, et al. Utility of single-shot compressed sensing cardiac magnetic resonance cine imaging for assessment of biventricular function in free-breathing and arrhythmic pediatric patients[J]. Int J Cardiol, 2021, 338: 258-264. DOI: 10.1016/j.ijcard.2021.06.043.
|
[36] |
Nguyen KL, Ghosh RM, Griffin LM, et al. Four-dimensional multiphase steady-state MRI with ferumoxytol enhancement: early multicenter feasibility in pediatric congenital heart disease[J]. Radiology, 2021, 300(1): 162-173. DOI: 10.1148/radiol.2021203696.
|
[37] |
Kim B, Loke YH, Mass P, et al. A novel virtual reality medical image display system for group discussions of congenital heart disease: development and usability testing[J]. JMIR Cardio, 2020, 4(1): e20633. DOI: 10.2196/20633.
|
[1] |
Bonnemains L, Raimondi F, Odille F. Specifics of cardiac magnetic resonance imaging in children[J]. Arch Cardiovasc Dis, 2016, 109(2): 143-149. DOI: 10.1016/j.acvd.2015.11.004.
|
[2] |
Valsangiacomo Buechel ER, Grosse-Wortmann L, Fratz S, et al. Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI[J]. Eur Heart J Cardiovasc Imaging, 2015, 16(3): 281-297. DOI: 10.1093/ehjci/jeu129.
|
[3] |
Valverde I, Tangcharoen T, Hussain T, et al. Magnetic resonance imaging planning in children with complex congenital heart disease - a new approach[J]. JRSM Cardiovasc Dis, 2017, 6: 2048004017701870. DOI: 10.1177/2048004017701870.
|
[4] |
Albrecht MH, Varga-Szemes A, Schoepf UJ, et al. Diagnostic accuracy of non-contrast self-navigated free-breathing MR angiography versus CT angiography: a prospective study in pediatric patients with suspected anomalous coronary arteries[J]. Acad Radiol. 2019, 26(10): 1309-1317. DOI: 10.1016/j.acra.2018.12.010.
|
[5] |
|
[6] |
Han BK, Rigsby CK, Hlavacek A, et al. Computed tomography imaging in patients with congenital heart disease part Ⅰ:rationale and utility. an expert consensus document of the society of cardiovascular computed tomography (SCCT): endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging(NASCI)[J]. J Cardiovasc Comput Tomogr, 2015, 9(6): 475-492. DOI: 10.1016/j.jcct.2015.07.004.
|
[7] |
|
[8] |
Geiger J, Callaghan FM, Burkhardt BEU, et al. Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children[J]. Pediatr Radiol, 2021, 51(8): 1503-1517. DOI: 10.1007/s00247-020-04885-w.
|
[9] |
Rose MJ, Rigsby CK, Berhane H, et al. 4-D flow MRI aortic 3-D hemodynamics and wall shear stress remain stable over short-term follow-up in pediatric and young adult patients with bicuspid aortic valve[J]. Pediatr Radiol, 2019, 49(1): 57-67. DOI: 10.1007/s00247-018-4257-y.
|
[10] |
van der Palen RLF, Deurvorst QS, Kroft LJM, et al. Altered ascending aorta hemodynamics in patients after arterial switch operation for transposition of the great arteries[J]. J Magn Reson Imaging, 2020, 51(4): 1105-1116. DOI: 10.1002/jmri.26934.
|
[11] |
van der Ven JPG, Sadighy Z, Valsangiacomo Buechel ER, et al. Multi-centre reference values for cardiac magnetic resonance imaging derived ventricular size and function for children aged 0-18 years[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(1): 102-113. DOI: 10.1093/ehjci/jez164.
|
[12] |
Muthurangu V. Cardiovascular magnetic resonance in congenital heart disease: focus on heart failure[J]. Heart Fail Clin, 2021, 17(1): 157-165. DOI: 10.1016/j.hfc.2020.08.012.
|
[13] |
Writing Group, Sachdeva R, Valente AM, et al. ACC/AHA/ASE/HRS/ISACHD/SCAI/SCCT/SCMR/SOPE 2020 appropriate use criteria for multimodality imaging during the follow-up care of patients with congenital heart disease: a report of the American College of Cardiology Solution set oversight committee and appropriate use criteria task force, American Heart Association, American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Pediatric Echocardiography[J]. J Am Soc Echocardiogr, 2020, 33(10): e1-e48. DOI: 10.1016/j.echo.2020.04.026.
|