切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (04) : 373 -378. doi: 10.3877/cma.j.issn.1673-5250.2022.04.001

述评

心脏MRI的儿童心血管疾病评价及临床应用现状
傅航, 郭应坤()   
  1. 四川大学华西第二医院放射科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2022-01-09 修回日期:2022-07-11 出版日期:2022-08-01
  • 通信作者: 郭应坤

Assessment of cardiovascular diseases in children by cardiac magnetic resonance

Hang Fu, Yingkun Guo()   

  1. Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2022-01-09 Revised:2022-07-11 Published:2022-08-01
  • Corresponding author: Yingkun Guo
  • Supported by:
    National Natural Science Foundation of China(81901712, 81771887); Clinical Research Funding of Chinese Society of Cardiology (CSC)(HFCSC2019B01)
引用本文:

傅航, 郭应坤. 心脏MRI的儿童心血管疾病评价及临床应用现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(04): 373-378.

Hang Fu, Yingkun Guo. Assessment of cardiovascular diseases in children by cardiac magnetic resonance[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(04): 373-378.

心血管疾病(CVD)可导致包括儿童心脏解剖结构、血流动力学、心功能和心肌组织在内的一系列病理生理改变,治疗前、后准确评估这些改变,对CVD治疗方案制定、疗效评估及远期随访至关重要。心脏MRI(CMR)凭借对软组织的高分辨率、无电离辐射,以及对心脏解剖结构、心功能和心肌组织一站式成像等优势,成为儿童CVD重要检查手段。CMR的自旋回波脉冲序列、脂肪抑制3D真实稳态自由进动快速成像序列及对比剂增强MRI血管造影(MRA),可清晰显示心房、心室、大血管等解剖结构的形态、大小及相互连接关系。相位对比(PC) CMR和4D-flow CMR技术,可准确定量测定血流流速和流量,分析心搏量、肺/体循环比、瓣膜口反流量和房室压力梯度差等血流动力学参数改变。电影序列CMR可精确测定心室整体收缩和舒张功能,结合组织追踪技术评价心肌形变,还可用于心功能亚临床障碍的早期评估。首过灌注、钆(Gd)对比剂延迟强化(LGE)、T1及T2-mapping技术等CMR,可无创定量评估冠状动脉微循环、心肌纤维化和心肌水肿改变,为儿童CVD病因探索、病理生理监测和预后评估提供关键信息,为儿童CVD的临床管理提供科学依据。笔者拟就CMR在儿童CVD诊疗过程中的价值及其最新研究现状进行阐述。

Cardiovascular diseases (CVD) in children would cause pathophysiological disorders in cardiac structure, hemodynamics, function and myocardial tissue. Accurate assessment of these disorders is of great importance for treatment decision making, therapeutic efficacy evaluation and long-term follow-up for CVD. Based on cardiac magnetic resonance (CMR)′s advantages of high soft tissue resolution, without ionizing radiation and one-stop imaging of anatomical structure, function and myocardial tissue, CMR has become an important examination modality for children with CVD. The spin-echo pulse sequence, fast-suppressed-3D-true fast imaging with steady-state precession sequence of CMR and contrast-enhanced magnetic resonance angiography (MRA) showed good visualization of the morphology, size, interconnections of atrium, ventricles and large vessels. Phase contrast (PC) and 4D-flow of CMR can measure blood flow velocity and volume quantitatively, evaluate hemodynamic accurately, including analyze cardiac stroke volume, pulmonary blood flow/systemic blood flow, valvular reverse flow, and pressure gradient. Cine sequence of CMR can assess cardiac systolic and diastolic functions accurately. Combined with feature tissue tracking, cine sequence of CMR can also be used to early assess subclinical cardiac dysfunction by evaluating myocardial deformation. Furthermore, coronary microcirculation, myocardial fibrosis and edema can be detected quantitatively with first-pass perfusion imaging, late gadolinium enhancement (LGE), T1-mapping and T2-mapping of CMR , which could provide clinical information related to etiology, pathophysiology and prognosis for improving clinical management of children with CVD. Herein, the author intends to expound the value of CMR in diagnosis and treatment of children with CVD.

[14]
Siegel B, Olivieri L, Gordish-Dressman H, et al. Myocardial strain using cardiac MR feature tracking and speckle tracking echocardiography in duchenne muscular dystrophy patients[J]. Pediatr Cardiol, 2018, 39(3): 478-483. DOI: 10.1007/s00246-017-1777-4.
[15]
Callegari A, Marcora S, Burkhardt B, et al. Myocardial deformation in Fontan patients asssessed by cardiac magnetic resonance feature tracking: correlation with function, clinical course, and biomarkers[J]. Pediatr Cardiol, 2021, 42(7): 1625-1634. DOI: 10.1007/s00246-021-02650-w.
[16]
Biko DM, Collins RT, Partington SL, et al. Magnetic resonance myocardial perfusion imaging: safety and indications in pediatrics and young adults[J]. Pediatr Cardiol, 2018, 39(2): 275-282. DOI: 10.1007/s00246-017-1752-0.
[17]
Scannell CM, Hasaneen H, Greil G, et al. Automated quantitative stress perfusion cardiac magnetic resonance in pediatric patients[J]. Front Pediatr, 2021, 9: 699497. DOI: 10.3389/fped.2021.699497.
[18]
Fares M, Critser PJ, Arruda MJ, et al. Pharmacologic stress cardiovascular magnetic resonance in the pediatric population: a review of the literature, proposed protocol, and two examples in patients with Kawasaki disease[J]. Congenit Heart Dis, 2019, 14(6): 1166-1175. DOI: 10.1111/chd.12840.
[19]
Etesami M, Gilkeson RC, Rajiah P. Utility of late gadolinium enhancement in pediatric cardiac MRI[J]. Pediatr Radiol, 2016, 46(8): 1096-113. DOI: 10.1007/s00247-015-3526-2.
[20]
Martins DS, Ait-Ali L, Khraiche D, et al. Evolution of acute myocarditis in a pediatric population: an MRI based study[J]. Int J Cardiol, 2021, 329: 226-233. DOI: 10.1016/j.ijcard.2020.12.052.
[21]
Silva MC, Magalhães TA, Meira ZM, et al. Myocardial fibrosis progression in Duchenne and Becker Muscular Dystrophy: a randomized clinical trial[J]. JAMA Cardiol, 2017, 2(2): 190-199. DOI: 10.1001/jamacardio.2016.4801.
[22]
Andrade Gomes HJ, de Padua Vieira Alves V, Nacif MS. The value of T1 mapping techniques in the assessment of myocardial interstitial fibrosis[J]. Magn Reson Imaging Clin N Am, 2019, 27(3): 563-574. DOI: 10.1016/j.mric.2019.04.007.
[23]
Riesenkampff E, Messroghli DR, Redington AN, et al. Myocardial T1 mapping in pediatric and congenital heart disease[J]. Circ Cardiovasc Imaging, 2015, 8(2): e002504. DOI: 10.1161/CIRCIMAGING.114.002504.
[24]
Yim D, Riesenkampff E, Caro-Dominguez P, et al. Assessment of diffuse ventricular myocardial fibrosis using native T1 in children with repaired tetralogy of Fallot[J]. Circ Cardiovasc Imaging, 2017, 10(3): e005695. DOI: 10.1161/CIRCIMAGING.116.005695.
[25]
Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert Recommendations[J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072.
[26]
Jia H, Guo J, Liu B, et al. Diagnostic value of 3.0 T cardiac MRI in children with suspected myocarditis: multi-parameter analysis for the evaluation of acute and chronic myocarditis[J]. Acta Radiol, 2020, 61(9): 1249-1257. DOI: 10.1177/0284185119900434.
[27]
Cornicelli MD, Rigsby CK, Rychlik K, et al. Diagnostic performance of cardiovascular magnetic resonance native T1 and T2 mapping in pediatric patients with acute myocarditis[J]. J Cardiovasc Magn Reson, 2019, 15, 21(1): 40. DOI: 10.1186/s12968-019-0550-7.
[28]
Sethi N, Doshi A, Doshi T, et al. Quantitative cardiac magnetic resonance T2 imaging offers ability to non-invasively predict acute allograft rejection in children[J]. Cardiol Young, 2020, 30(6): 852-859. DOI: 10.1017/S104795112000116X.
[29]
Yuan SM. Cardiomyopathy in the pediatric patients[J]. Pediatr Neonatol, 2018, 59(2): 120-128. DOI: 10.1016/j.pedneo.2017.05.003.
[30]
Bunck AC, Baeßler B, Ritter C, et al. Structured reporting in cross-sectional imaging of the heart: reporting templates for CMR imaging of cardiomyopathies (myocarditis, dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and siderosis)[J]. Rofo, 2020, 192(1): 27-37. DOI: 10.1055/a-0998-4116.
[31]
Chow EJ, Leger KJ, Bhatt NS, et al. Paediatric cardio-oncology: epidemiology, screening, prevention, and treatment[J]. Cardiovasc Res, 2019, 115(5): 922-934. DOI: 10.1093/cvr/cvz031.
[32]
Blondiaux E, Parisot P, Redheuil A, et al. Cardiac MRI in children with multisystem inflammatory syndrome associated with COVID-19[J]. Radiology, 2020, 297(3): E283-E288. DOI: 10.1148/radiol.2020202288.
[33]
Power LC, O′Grady GL, Hornung TS, et al. Imaging the heart to detect cardiomyopathy in Duchenne muscular dystrophy: a review[J]. Neuromuscul Disord, 2018, 28(9): 717-730. DOI: 10.1016/j.nmd.2018.05.011.
[34]
Schäfer M, Nadeau KJ, Reusch JEB. Cardiovascular disease in young people with type 1 diabetes: search for cardiovascular biomarkers[J]. J Diabetes Complications, 2020, 34(10): 107651. DOI: 10.1016/j.jdiacomp.2020.107651.
[35]
Zou Q, Xu HY, Fu C, et al. Utility of single-shot compressed sensing cardiac magnetic resonance cine imaging for assessment of biventricular function in free-breathing and arrhythmic pediatric patients[J]. Int J Cardiol, 2021, 338: 258-264. DOI: 10.1016/j.ijcard.2021.06.043.
[36]
Nguyen KL, Ghosh RM, Griffin LM, et al. Four-dimensional multiphase steady-state MRI with ferumoxytol enhancement: early multicenter feasibility in pediatric congenital heart disease[J]. Radiology, 2021, 300(1): 162-173. DOI: 10.1148/radiol.2021203696.
[37]
Kim B, Loke YH, Mass P, et al. A novel virtual reality medical image display system for group discussions of congenital heart disease: development and usability testing[J]. JMIR Cardio, 2020, 4(1): e20633. DOI: 10.2196/20633.
[1]
Bonnemains L, Raimondi F, Odille F. Specifics of cardiac magnetic resonance imaging in children[J]. Arch Cardiovasc Dis, 2016, 109(2): 143-149. DOI: 10.1016/j.acvd.2015.11.004.
[2]
Valsangiacomo Buechel ER, Grosse-Wortmann L, Fratz S, et al. Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI[J]. Eur Heart J Cardiovasc Imaging, 2015, 16(3): 281-297. DOI: 10.1093/ehjci/jeu129.
[3]
Valverde I, Tangcharoen T, Hussain T, et al. Magnetic resonance imaging planning in children with complex congenital heart disease - a new approach[J]. JRSM Cardiovasc Dis, 2017, 6: 2048004017701870. DOI: 10.1177/2048004017701870.
[4]
Albrecht MH, Varga-Szemes A, Schoepf UJ, et al. Diagnostic accuracy of non-contrast self-navigated free-breathing MR angiography versus CT angiography: a prospective study in pediatric patients with suspected anomalous coronary arteries[J]. Acad Radiol. 2019, 26(10): 1309-1317. DOI: 10.1016/j.acra.2018.12.010.
[5]
王静蕾,孙爱敏,王谦,等. 3D SSFP成像技术在先天性心脏病Fontan术后中的应用[J]. 中国医疗设备2019, 34(6): 97-99, 113. DOI: 10.3969/j.issn.1674-1633.2019.06.026.
[6]
Han BK, Rigsby CK, Hlavacek A, et al. Computed tomography imaging in patients with congenital heart disease part Ⅰ:rationale and utility. an expert consensus document of the society of cardiovascular computed tomography (SCCT): endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging(NASCI)[J]. J Cardiovasc Comput Tomogr, 2015, 9(6): 475-492. DOI: 10.1016/j.jcct.2015.07.004.
[7]
胡立伟,钟玉敏,刘金龙,等. 基于儿童心脏磁共振的Glenn术后血流动力学应用研究[J].中国医学计算机成像杂志2018, 24(3): 195-199. DOI: 10.19627/j.cnki.cn31-1700/th.2018.03.003.
[8]
Geiger J, Callaghan FM, Burkhardt BEU, et al. Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children[J]. Pediatr Radiol, 2021, 51(8): 1503-1517. DOI: 10.1007/s00247-020-04885-w.
[9]
Rose MJ, Rigsby CK, Berhane H, et al. 4-D flow MRI aortic 3-D hemodynamics and wall shear stress remain stable over short-term follow-up in pediatric and young adult patients with bicuspid aortic valve[J]. Pediatr Radiol, 2019, 49(1): 57-67. DOI: 10.1007/s00247-018-4257-y.
[10]
van der Palen RLF, Deurvorst QS, Kroft LJM, et al. Altered ascending aorta hemodynamics in patients after arterial switch operation for transposition of the great arteries[J]. J Magn Reson Imaging, 2020, 51(4): 1105-1116. DOI: 10.1002/jmri.26934.
[11]
van der Ven JPG, Sadighy Z, Valsangiacomo Buechel ER, et al. Multi-centre reference values for cardiac magnetic resonance imaging derived ventricular size and function for children aged 0-18 years[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(1): 102-113. DOI: 10.1093/ehjci/jez164.
[12]
Muthurangu V. Cardiovascular magnetic resonance in congenital heart disease: focus on heart failure[J]. Heart Fail Clin, 2021, 17(1): 157-165. DOI: 10.1016/j.hfc.2020.08.012.
[13]
Writing Group, Sachdeva R, Valente AM, et al. ACC/AHA/ASE/HRS/ISACHD/SCAI/SCCT/SCMR/SOPE 2020 appropriate use criteria for multimodality imaging during the follow-up care of patients with congenital heart disease: a report of the American College of Cardiology Solution set oversight committee and appropriate use criteria task force, American Heart Association, American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Pediatric Echocardiography[J]. J Am Soc Echocardiogr, 2020, 33(10): e1-e48. DOI: 10.1016/j.echo.2020.04.026.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[3] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[4] 陈晓玲, 钟永洌, 刘巧梨, 李娜, 张志奇, 廖威明, 黄桂武. 超高龄髋膝关节术后谵妄及心血管并发症风险预测[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 575-584.
[5] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[6] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[7] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[8] 丁荷蓓, 王珣, 陈为国. 七氟烷吸入麻醉与异丙酚静脉麻醉在儿童腹股沟斜疝手术中的应用比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 570-574.
[9] 宋新雅, 苏小慧, 卞士柱, 丁小涵. 吸入性药物治疗肺动脉高压的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 831-835.
[10] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[11] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[12] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[13] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[14] 陈晓胜, 何佳, 刘方, 吴蕊, 杨海涛, 樊晓寒. 直立倾斜试验诱发31 秒心脏停搏的植入心脏起搏器儿童一例并文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 488-494.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要