切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (03) : 315 -322. doi: 10.3877/cma.j.issn.1673-5250.2022.03.010

论著

citrin缺陷所致新生儿肝内胆汁淤积症的SLC25A13基因IVS16ins3kb突变类型分析
王大燕, 李小兵(), 赖盼建   
  1. 浙江大学医学院附属金华医院儿科,金华 321000
  • 收稿日期:2022-03-01 修回日期:2022-05-10 出版日期:2022-06-01
  • 通信作者: 李小兵

Analysis of SLC25A13 gene IVS16ins3kb variation in neonatal intrahepatic cholestasis caused by citrin deficiency

Dayan Wang, Xiaobing Li(), Panjian Lai   

  1. Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
  • Received:2022-03-01 Revised:2022-05-10 Published:2022-06-01
  • Corresponding author: Xiaobing Li
  • Supported by:
    Zhejiang Provincial Medical and Health Science and Technology Plan Project(2020KY342); Key Project of Social Development in Science and Technology Plan Project of Jinhua City(2019-3-010)
引用本文:

王大燕, 李小兵, 赖盼建. citrin缺陷所致新生儿肝内胆汁淤积症的SLC25A13基因IVS16ins3kb突变类型分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(03): 315-322.

Dayan Wang, Xiaobing Li, Panjian Lai. Analysis of SLC25A13 gene IVS16ins3kb variation in neonatal intrahepatic cholestasis caused by citrin deficiency[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(03): 315-322.

目的

探讨citrin缺陷所致新生儿肝内胆汁淤积症(NICCD)患儿SLC25A13基因IVS16ins3kb突变类型的第二代测序技术(NGS)数据分析特点。

方法

选择2017年7月与2020年4月,浙江大学医学院附属金华医院儿科收治的符合NICCD临床诊断标准,采用染色体组分析工具箱(GATK)、XHMM、CNVkit软件,对患儿NGS靶向外显子捕获测序数据进行单核苷酸变异(SNV)、插入与缺失突变、拷贝数变异(CNV)分析,仅提示SLC25A13基因单个位点杂合突变的2例患儿(患儿1、2)为研究对象。采用回顾性分析方法,收集患儿1、2的临床病例资料,包括病史、实验室检查结果、基因检测结果、治疗与预后等。利用福君基因动态实验室信息管理系统3.0(FLIMS系统),采用split read方法,对患儿1、2的NGS靶向外显子捕获测序原始数据(fastq格式)进行IVS16ins3kb突变类型分析,并采用长链、高保真PCR(LA-PCR)方法进行验证。本研究遵循的程序符合浙江大学医学院附属金华医院医学伦理委员会规定,并获得该委员会批准(审批文号:2018-119)。

结果

①病史采集:患儿1(女性)与患儿2(男性),分别因皮肤黄染2个月余与4个月余,于本院就诊,就诊时年龄分别为2个月+19 d、4个月+16 d,均为足月儿、均无家族遗传性疾病史。②实验室检查、治疗:入院时,对患儿1、2干血片采取串联质谱仪进行遗传代谢病检测结果显示,血液中瓜氨酸、甲硫氨酸等多种氨基酸含量显著增高;肘静脉血生化检查结果显示,血清氨、乳酸浓度及血清总胆红素(STB)、血清直接胆红素(SDB)、血清间接胆红素(SIB)、天冬氨酸氨基转移酶(AST)、γ-谷氨酰转移酶、碱性磷酸酶均异常增高。对患儿1、2均采取无乳糖配方奶喂养3个月后,血液生化指标均明显好转。③NGS靶向外显子捕获及Sanger测序法验证结果:采用GATK、XHMM、CNVki软件对患儿1、2的NGS靶向外显子捕获测序数据进行SNV、插入与缺失突变、CNV分析结果提示,分别存在SLC25A13基因9号外显子c.852_855delTATG、16号外显子c.1638_1660dup杂合移码、功能缺失性热点突变,经Sanger测序法验证,上述突变分别遗传自患儿1、2父亲。④使用split read方法,对患儿1、2的NGS靶向外显子捕获测序原始数据(fastq格式)进行分析发现,SLC25A13基因16号内含子区域特征性split read一端为6号染色体DNA序列,另一端为7号染色体DNA序列,SLC25A13基因16号内含子区域特征性split read发生结构变异,可能为7号染色体SLC25A13基因发生IVS16ins3kb插入突变。⑤采用LA-PCR方法验证结果提示,患儿1、2分别存在SLC25A13基因c.852_855delTATG+IVS16ins3kb及c.1638_1660dup+IVS16ins3kb复合杂合热点突变,均被确诊为NICCD患儿。

结论

对于NGS结果呈阴性或检出SLC25A13基因单个位点杂合突变的临床疑似NICCD患儿,可采用split read方法,对其NGS原始数据(fastq格式)进一步进行IVS16ins3kb突变分析,降低对该病患儿漏诊及误诊率。

Objective

To explore characteristics of next-generation sequencing (NGS) data analysis of SLC25A13 gene IVS16ins3kb variation in children with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD).

Methods

On July 2017 and April 2020, two cases of clinically diagnosed NICCD (case 1 and case 2) who had only single locus heterozygous variation of SLC25A13 gene confirmed by single nucleotide variation (SNV), insertion and deletion variations, and copy number variation (CNV) analysis of NGS targeted exon capture sequencing data using genome analysis toolbox (GATK), XHMM, and CNVkit softwares were selected as research subjects. Clinical data of 2 children, including medical history, laboratory test results, genetic test results, treatment and prognosis were collected by retrospective analysis method. With use of Fujun Gene FLIMS system (Fujun Gene Dynamic Laboratory Information Management System 3.0), split read method was used to analyzed IVS16ins3kb variation in original data of NGS targeted exon capture sequencing (fastq format) in case 1 and case 2, and long and accurate PCR (LA-PCR) method was used to prove IVS16ins3kb variation. This study was approved by the Medical Ethics Committee of Affiliated Jinhua Hospital, Zhejiang University School of Medicine (Approval No. 2018-119).

Results

①Medical history: case 1 (female) and case 2 (male) were treated in our hospital due to xanthochromia for more than 2 months and more than 4 months, respectively. Their ages at admission to hospital were 2-month-19-day and 4-month-16-day, respectively. Both two were full-term infants and had no family history of hereditary diseases. ②Laboratory test results, treatment and prognosis: citrulline, methionine and other amino acids of case 1 and case 2 were significantly increased by blood stasis tandem mass spectrometry genetic metabolic disease test. Serum ammonia and lactate concentrations were increased, and serum total bilirubin (STB), serum direct bilirubin (SDB), serum indirect bilirubin (SIB), aspartate aminotransferase (AST), γ-glutamyl transpeptidase, alkaline phosphatase were anomaly increased by ulnar vein blood biochemistry test. After 3 months of lactose-free formula feeding, blood biochemical indexes of case 1 and case 2 were significantly improved. ③NGS targeted exon capture sequencing and Sanger sequencing results: case 1 had a heterozygous frameshift, loss-of-function hot spot variation c. 852_855delTATG in exon 9 of SLC25A13 gene, and case 2 had a heterozygous frameshift, loss-of-function hot spot variation c. 1638_1660dup in exon 16 of SLC25A13 gene by SNV, insertion and deletion variations, and CNV analysis of NGS targeted exon capture sequencing data analyzed by GATK, XHMM, and CNVkit softwares. The above two variations both inherited from their fathers. ④Split read analysis results of original data of NGS targeted exon capture sequencing (fastq format) of two cases showed that one end of characteristic split read in intron 16 region of SLC25A13 gene was the DNA sequence of chromosome 6, and the other end was the DNA sequence of chromosome 7, structural variation occurred in characteristic split read in intron 16 region of SLC25A13 gene which might be IVS16ins3kb insertion variation of SLC25A13 gene in chromosome 7. ⑤Case 1 had c. 852_855delTATG + IVS16ins3kb compound heterozygous hot spot mutations of SLC25A13 gene, and case 2 had c. 1638_1660dup + IVS16ins3kb compound heterozygous hot spot mutations of SLC25A13 gene which were confirmed by LA-PCR method. Both of them were diagnosed as NICCD finally.

Conclusions

For children with clinically suspected NICCD who have a negative NGS result or detection of a single allelic variation of SLC25A13 gene, the original data of NGS (fastq format) can be further analyzed for IVS16ins3kb variation by split read method to reduce rate of missed diagnosis and misdiagnosis of NICCD.

表1 NICCD患儿1、2入院时与治疗3个月后的血液生化检查结果
图1 NICCD患儿1(女性,2个月+19 d)与患儿2(男性,4个月+16 d)及其各自父母SLC25A13基因突变位点Sanger测序法验证图(图1A:患儿1及其父亲SLC25A13基因9号外显子c.852_855delTATG杂合突变,其母亲该位点无突变;图1B:患儿2及其父亲SLC25A13基因16号外显子c.1638_1660dup杂合突变,其母亲该位点无突变)注:NICCD为citrin缺陷所致新生儿肝内胆汁淤积症
图2 采用split read方法对NICCD患儿1(女性,2个月+19 d)与患儿2(男性,4个月+16 d) NGS靶向外显子捕获测序原始数据(fastq格式)的SLC25A13基因IVS16ins3kb突变分析结果(图2A:患儿1分析结果;图2B:患儿2分析结果)注:图2为采用SAMtools软件直接查看患儿1、2 NGS靶向外显子捕获测序bam文件的结果图,左侧和右侧的chr6、chr7表示一对双端测序序列,可见read 1比对在chr6上,而read 2比对在chr7上。chr6:6号染色体,chr7:7号染色体;QNAME:表示比对的read名称,一般指染色体编号;MPOS:表示与该read对应的另一条read的比对位置;MAPQ:表示read比对质量值,该值越高,表示该read比对至参考基因组上的位置越准确;CIGAR:read比对结果;DISTANCE:表示read 1与read 2之间的距离。NICCD为citrin缺陷所致新生儿肝内胆汁淤积症,NGS为第二代测序技术
图3 NICCD患儿1(女性,2个月+19 d)与患儿2(男性,4个月+16 d) SLC25A13基因IVS16ins3kb突变LA-PCR验证电泳结果(图3A:患儿1及其父母电泳结果;图3B:患儿2及其父母电泳结果)注:患儿1、2及其各自母亲泳道在3 000 bp及700 bp处,均可见2条电泳条带(红色、绿色方框所示),提示SLC25A131等位基因存在IVS16ins3kb异常插入,该突变遗传自其母亲。700 bp处电泳产物为正常SLC25A13基因条带。M1、M2均为分子量标志物。NICCD为citrin缺陷所致新生儿肝内胆汁淤积症
[1]
Lin WX, Zeng HS, Zhang ZH, et al. Molecular diagnosis of pediatric patients with citrin deficiency in China: SLC25A13 mutation spectrum and the geographic distribution[J]. Sci Rep, 2016, 6: 29732, DOI: 10.1038/srep29732.
[2]
Lu YB, Kobayashi K, Ushikai M, et al. Frequency and distribution in East Asia of 12 mutations identified in the SLC25A13 gene of Japanese patients with citrin deficiency[J]. J Hum Genet, 2005, 50(7): 338-346. DOI: 10.1007/s10038-005-0262-8.
[3]
Tabata A, Sheng JS, Ushikai M, et al. Identification of 13 novel mutations including a retrotransposal insertion in SLC25A13 gene and frequency of 30 mutations found in patients with citrin deficiency[J]. J Hum Genet, 2008, 53(6): 534-545. DOI: 10.1007/s10038-008-0282-2.
[4]
温鹏强,王国兵,陈占玲,等. Citrin缺陷导致的新生儿肝内胆汁淤积症SLC25A13基因分析[J]. 中国当代儿科杂志2011, 13(4): 303-308.
[5]
王春宇,潘俊,郭茂祖,等. 基于读分割最优匹配的indels识别算法[J]. 软件学报2017, 28(10): 2640-2653. DOI: 10.13328/j.cnki.jos.005137.
[6]
Zhang ZH, Lin WX, Zheng QQ, et al. Molecular diagnosis of citrin deficiency in an infant with intrahepatic cholestasis: identification of a 21.7 kb gross deletion that completely silences the transcriptional and translational expression of the affected SLC25A13 allele[J]. Oncotarget, 2017, 8(50): 87182-87193. DOI: 10.18632/oncotarget.19901.
[7]
费强,俞惠民. Citrin缺陷导致的新生儿肝内胆汁淤积症诊治进展[J]. 中华新生儿科杂志2018, 33(3): 234-237. DOI: 10.3760/cma.j.issn.2096-2932.2018.03.021.
[8]
Ye K, Guo L, Yang X, et al. Split-read indel and structural variant calling using PINDEL[J]. Methods Mol Biol, 2018, 1833: 95-105. DOI: 10.1007/978-1-4939-8666-8_7.
[9]
Contreras L, Gomez-Puertas P, Iijima M, et al. Ca2+ activation kinetics of the two aspartate-glutamate mitochondrial carriers, aralar and citrin: role in the heart malate-aspartate NADH shuttle[J]. J Biol Chem, 2007, 282: 7098-7106. DOI: 10.1074/jbc.M610491200.
[10]
Kobayashi K, Sinasac DS, Iijima M, et al. The gene mutated in adult-onset type Ⅱ citrullinaemia encodes a putative mitochondrial carrier protein[J]. Nat Genet, 1999, 22(2): 159-163. DOI: 10.1038/9667.
[11]
Wang LY, Chen NI, Chen PW, et al. Newborn screening for citrin deficiency and carnitine uptake defect using second-tier molecular tests[J]. BMC Med Genet, 2013, 14: 24. DOI: 10.1186/1471-2350-14-24.
[12]
Song YZ, Zhang ZH, Lin WX, et al. SLC25A13 gene analysis in citrin deficiency: sixteen novel mutations in East Asian patients, and the mutation distribution in a large pediatric cohort in China[J]. PLoS One, 2013, 8(9): e74544. DOI: 10.1371/journal.pone.0074544.
[13]
Oh SH, Lee BH, Kim GH, et al. Biochemical and molecular characteristics of citrin deficiency in Korean children[J]. J Hum Genet, 2017, 62(2): 305-307. DOI: 10.1038/jhg.2016.131.
[14]
Chen R, Wang XH, Fu HY, et al. Different regional distribution of SLC25A13 mutations in Chinese patients with neonatal intrahepatic cholestasis[J]. World J Gastroenterol, 2013, 19(28): 4545-4551. DOI: 10.3748/wjg.v19.i28.4545.
[15]
Wongkittichote P, Tungpradabkul S, Wattanasirichaigoon D, et al. Prediction of the functional effect of novel SLC25A13 variants using a S. cerevisiae model of AGC2 deficiency[J]. J Inherit Metab Dis, 2013, 36(5): 821-830. DOI: 10.1007/s10545-012-9543-5.
[16]
Wang H, Shu S, Chen C, et al. Novel mutations in the SLC25A13 gene in a patient with NICCD and severe manifestations[J]. J Pediatr Endocrinol Metab, 2015, 28(3-4): 471-475. DOI: 10.1515/jpem-2014-0278.
[17]
Bijarnia-Mahay S, Häberle J, Rufenacht V, et al. Citrin deficiency: a treatable cause of acute psychosis in adults[J]. Neurol India, 2015, 63(2): 220-222. DOI: 10.4103/0028-3886.156285.
[18]
Zhang ZH, Yang ZG, Chen FP, et al. Screening for five prevalent mutations of SLC25A13 gene in Guangdong, China: a molecular epidemiologic survey of citrin deficiency[J]. Tohoku J Exp Med, 2014, 233(4): 275-281. DOI: 10.1620/tjem.233.275.
[19]
Avdjieva-Tzavella DM, Ivanova MB, Todorov TP, et al. First Bulgarian case of citrin deficiency caused by one novel and one recurrent mutation in the SLC25A13 gene[J]. Genet Couns, 2014, 25(3): 271-276.
[20]
den Dunnen JT, Antonarakis SE. Nomenclature for the description of human sequence variations[J]. Hum Genet, 2001, 109(1): 121-124. DOI: 10.1007/s004390100505.
[21]
Thangaratnarajah C, Ruprecht JJ, Kunji ER. Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers[J]. Nat Commun, 2014, 5: 5491. DOI: 10.1038/ncomms6491.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 何霞, 黄蓉, 祁文瑾. 胎膜早破孕妇胎盘与胎膜菌群丰度的高通量测序研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 549-555.
[3] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[4] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[5] 刘静, 王燕妮, 王继萍. 儿童毛发移植应用前景及病例讨论[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 368-368.
[6] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[7] 丁荷蓓, 王珣, 陈为国. 七氟烷吸入麻醉与异丙酚静脉麻醉在儿童腹股沟斜疝手术中的应用比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 570-574.
[8] 曾纪晓, 徐晓钢, 王欣星, 刘斐, 兰梦龙, 陶波圆, 梁子建, 叶志华, 罗媛圆. 达芬奇机器人辅助Swenson-like巨结肠根治术[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 239-243.
[9] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[10] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[11] 张佳臣, 宋红欣. 儿童青少年等效球镜屈光度变化与屈光不正进展相关性的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 217-222.
[12] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[13] 王晓瑜, 郭群英, 牛雅萌, 赵成松. 公立儿童医院促进儿科就医均等化实践探析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 383-387.
[14] 陈晓胜, 何佳, 刘方, 吴蕊, 杨海涛, 樊晓寒. 直立倾斜试验诱发31 秒心脏停搏的植入心脏起搏器儿童一例并文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 488-494.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要