切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (05) : 598 -605. doi: 10.3877/cma.j.issn.1673-5250.2021.05.014

论著

无创高频振荡通气在极低出生体重早产儿呼吸窘迫综合征初始呼吸支持治疗中的应用
翟敬芳1,1, 吴杰斌2,2, 刘枭2,2, 金宝2,2, 王彦波2,2, 陈洋2,2, 王云2,2, 周广玲2,2, 周彬2,,2()   
  • 收稿日期:2021-01-12 修回日期:2021-09-14 出版日期:2021-10-01
  • 通信作者: 周彬

Application of noninvasive high frequency oscillation ventilation in initial respiratory support of very low birth weight premature infants with respiratory distress syndrome

Jingfang Zhai1,1, Jiebin Wu2,2, Xiao Liu2,2, bao Jin2,2, Yanbo Wang2,2, Yang Chen2,2, Yun Wang2,2, Guangling Zhou2,2, Bin Zhou2,2,()   

  • Received:2021-01-12 Revised:2021-09-14 Published:2021-10-01
  • Corresponding author: Bin Zhou
  • Supported by:
    Maternal and Child Health Research Project of Health Commission in Jiangsu Province(F2019042); Key Research and Development Project of Xuzhou Science and Technology Bureau(KC18185)
引用本文:

翟敬芳, 吴杰斌, 刘枭, 金宝, 王彦波, 陈洋, 王云, 周广玲, 周彬. 无创高频振荡通气在极低出生体重早产儿呼吸窘迫综合征初始呼吸支持治疗中的应用[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 598-605.

Jingfang Zhai, Jiebin Wu, Xiao Liu, bao Jin, Yanbo Wang, Yang Chen, Yun Wang, Guangling Zhou, Bin Zhou. Application of noninvasive high frequency oscillation ventilation in initial respiratory support of very low birth weight premature infants with respiratory distress syndrome[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(05): 598-605.

目的

探讨经鼻无创高频振荡通气(NHFOV),在呼吸窘迫综合征(RDS)极低出生体重早产儿初始呼吸支持治疗的临床疗效。

方法

选择2018年2月至2020年4月,于徐州市中心医院新生儿重症监护病房(NICU)治疗的92例RDS极低出生体重早产儿为研究对象。采用随机数字表法,将其分为NHFOV组(n=48,采取NHFOV治疗)及经鼻持续气道正压通气(NCPAP)组(n=44,采取NCPAP治疗)。对2组RDS极低出生体重早产儿一般临床资料,无创通气治疗前、后动脉血气分析指标,疗效,呼吸支持治疗相关并发症发生率及患儿死亡率,采用成组t检验、χ2检验及Mann-Whitney U检验进行统计学比较。本研究经徐州市中心医院医学伦理委员会审核批准(审批文号:XZXY-LJ-20170328-006),并且与患儿监护人均签署临床研究知情同意书。

结果

①一般临床资料比较:2组RDS极低出生体重早产儿的性别、出生胎龄与体重及生后1、5 min Apgar评分,入院日龄及分娩前24 h母亲糖皮质激素使用率等一般临床资料比较,差异均无统计学意义(P>0.05)。② 2组RDS极低出生体重早产儿动脉血气分析指标组间比较:NHFOV组RDS极低出生体重早产儿无创通气治疗后1 h、24 h动脉血二氧化碳分压(PaCO2)分别为(45.8±6.5) mmHg(1 mmHg=0.133 kPa)及(40.8±4.7) mmHg,均显著低于NCPAP组的(49.3±5.7) mmHg及(44.2±5.2) mmHg;治疗后1 h、24 h动脉血氧分压(PaO2)与吸入氧浓度分数(FiO2)比值(P/F)分别为(198.8±30.5) mmHg及(215.1±32.1) mmHg,均显著高于NCPAP组的(176.4±28.1) mmHg及(190.0±29.7) mmHg,并且上述差异均有统计学意义(t=2.809、3.301、3.663、3.881,P=0.003、<0.001、<0.001、<0.001)。③2组动脉血气分析指标分别进行组内比较均为:无创通气治疗后24 h的pH值及治疗后1、24 h的PaCO2水平,均较治疗前改善,而且治疗后24 h的P/F值高于治疗后1 h,并且差异均有统计学意义(P<0.05)。④无创通气疗效比较:NHFOV组RDS极低出生体重早产儿无创通气治疗后,肺表面活性剂(PS)使用率及有创机械通气率(22.9%、6.3%),均显著低于NCPAP组(45.5%、20.5%),并且差异均有统计学意义(χ2=5.219、4.084,P=0.022、0.043)。2组RDS极低出生体重早产儿无创通气时间、柠檬酸咖啡因使用率、频繁呼吸暂停发生率及总用氧时间比较,差异均无统计学意义(P>0.05)。⑤2组RDS极低出生体重早产儿鼻损伤、肺气漏、新生儿坏死性小肠结肠炎(NEC)、Ⅲ~Ⅳ级脑室内出血(IVH)、早产儿视网膜病(ROP)(≥Ⅱ期)及支气管肺发育不良(BPD)发生率,以及患儿死亡率比较,差异均无统计学意义(P>0.05)。

结论

与NCPAP比较,NHFOV用于RDS极低出生体重早产儿初始呼吸支持治疗,能改善氧合、减少二氧化碳(CO2)潴留、减少有创机械通气及PS使用,同时不增加呼吸支持治疗相关并发症发生。

Objective

To explore the clinical efficacy of transnasal noninvasive high frequency oscillation ventilation (NHFOV) in initial respiratory support of very low birth weight premature infants with respiratory distress syndrome (RDS).

Methods

A total of 92 cases of very low birth weight premature infants with RDS in neonatal intensive care unit(NICU) of Xuzhou Central Hospital from February 2018 to April 2020 were selected as research subjects. Through random number table method, they were divided into NHFOV group (n=48, used NHFOV noninvasive ventilation mode) and nasal continuous positive airway pressure (NCPAP) group (n=44, used NCPAP noninvasive ventilation mode). Their general clinical data, arterial blood gas analysis indicators before and after noninvasive ventilation treatment, therapeutic effect of noninvasive ventilation, incidences of complications related to respiratory support treatment and mortality rate were compared between 2 groups of very low birth weight premature infants with RDS by independent-samples t test, chi-square test and Mann-Whitney U test. This study was approved by the Medical Ethics Committee of Xuzhou Central Hospital (Approval No. XZXY-LJ-20170328-006). And all the children′s guardians signed informed consents of this study.

Results

①Comparison results of general clinical data: there were no significant differences between two groups in terms of gender, gestational age, birth weight, Apgar scores at 1 min and 5 min after birth, age of admission and maternal glucocorticoid use rate 24 h before delivery (P>0.05). ②Inter-group comparison: arterial blood gas analysis indexes of arterial partial pressure of carbon dioxide (PaCO2) at 1 h and 24 h after noninvasive ventilation treatment in NHFOV group were (45.8±6.5) mmHg (1 mmHg=0.133 kPa) and (40.8±4.7) mmHg, respectively, which were significantly lower than those of (49.3±5.7) mmHg and (44.2±5.2) mmHg in NCPAP group accordingly; and the ratio of arterial oxygen partial pressure (PaO2) to fraction of inspired oxygen (FiO2) (P/F) at 1 and 24 h after treatment were (198.8±30.5) mmHg and (215.1±32.1) mmHg in NHFOV group, respectively, which were significantly higher than those of (176.4±28.1) mmHg and (190.0±29.7) mmHg in NCPAP group, and all differences mentioned above were statistically significant (t=2.809, 3.301, 3.663, 3.881; P=0.003, <0.001, <0.001, <0.001). ③Intra-group comparison: arterial blood gas analysis indexes of pH value at 24 h and PaCO2 levels at 1 and 24 h after noninvasive ventilation were all better improved than those before treatment, and P/F value at 24 h after treatment was higher than that at 1 h after treatment (P<0.05). ④ Comparison results of therapeutic effects of noninvasive ventilation between two groups: treatment rate with pulmonary surfactant (PS) and treatment rate of invasive mechanical ventilation in NHFOV group (22.9% and 6.3%) were significantly lower than those in NCPAP group (45.5% and 20.5%) after noninvasive ventilation treatment, and their differences were statistically significant (χ2=5.219, 4.084; P=0.022, 0.043). There were no significant differences of duration of noninvasive ventilation, treatment rate with caffeine citrate, incidence of frequent apnea and total treatment time of oxygen inhalation between two groups (P>0.05). ⑤ There were no significant differences in incidence of nasal injury, pulmonary air leakage, neonatal necrotic enterocolitis (NEC), grade Ⅲ-Ⅳ intraventricular hemorrhage (IVH), retinopathy of prematurity (ROP) (≥grade Ⅱ), bronchopulmonary dysplasia (BPD), and mortality between two groups (P>0.05).

Conclusions

Compared with NCPAP in initial respiratory support treatment of very low birth weight premature infants with RDS, NHFOV can improve oxygenation, prevent carbon dioxide (CO2) retention, reduce the use of invasive mechanical ventilation and exogenous PS, and not increase the incidence of several complications related to respiratory support therapy.

表1 2组RDS极低出生体重早产儿一般临床资料比较
表2 2组RDS极低出生体重早产儿无创通气治疗前、后动脉血气分析指标比较(±s)
表3 2组RDS极低出生体重早产儿无创通气疗效比较
表4 2组RDS极低出生体重早产儿呼吸支持治疗相关并发症发生率及患儿死亡率比较[例数(%)]
[1]
邵肖梅,叶鸿瑁,丘小汕. 实用新生儿学[M]. 5版. 北京:人民卫生出版社,2019: 575-578.
[2]
黄静,林新祝,巴瑞华. 三种无创通气模式在早产儿呼吸窘迫综合征初始治疗中的临床应用[J]. 中国小儿急救医学2021, 28(7): 603-608. DOI: 10.3760/cma.j.issn.1673-4912.2021.07.012.
[3]
吴杰斌,周彬,翟敬芳,等. 不同无创通气模式联合肺表面活性物质在新生儿呼吸窘迫综合征初始呼吸支持的临床应用[J/CD]. 中华临床医师杂志(电子版), 2017, 11(3): 383-387. DOI: 10.3877/cma.j.issn.1674-0785.2017.03.006.
[4]
汪万军,朱兴旺,史源. 无创高频通气在新生儿呼吸支持中的临床应用[J]. 中华实用儿科临床杂志2019, 34(11): 805-808. DOI: 10.3760/cma.j.issn.2095_428X.2019.11.002.
[5]
中华医学会儿科学分会新生儿学组. 早产儿无创呼吸支持临床应用建议[J]. 中华儿科杂志2018, 56(9): 643-647. DOI: 10.3760/cma.j.issn.0578-1310.2018.09.002.
[6]
茹喜芳,冯琪. 新生儿呼吸窘迫综合征的防治——欧洲共识指南2019版[J]. 中华新生儿科杂志(中英文), 2019, 34(3): 239-240. DOI: 10.3760/cma.j.issn.2096-2932.2019.03.020.
[7]
《中华儿科杂志》编辑委员会,中华医学会儿科学分会新生儿学组. 新生儿机械通气常规[J]. 中华儿科杂志2015, 53(5): 327-330. DOI: 10.3760/cma.j.issn.0578-1310.2015.05.003.
[8]
Eichenwald EC. High frequency oscillatory ventilation: is equivalence with conventional mechanical ventilation enough?[J]. Arch Dis Child Fetal Neonatal Ed, 2006, 91(5): F315-F317. DOI: 10.1136/adc.2006.100487.
[9]
van der Hoeven M, Brouwer E, Blanco CE. Nasal high frequency ventilation in neonates with moderate respiratory insufficiency[J]. Arch Dis Child Fetal Neonatal Ed, 1998, 79(1): F61-F63. DOI: 10.1136/fn.79.1.f61.
[10]
Colaizy TT, Younis UM, Bell EF, et al. Nasal high-frequency ventilation for premature infants[J]. Acta Paediatr, 2008, 97(11): 1518-1522. DOI: 10.1111/j.1651-2227.2008.00900.x.
[11]
周晓光,肖昕,农绍汉. 新生儿机械通气治疗学[M]. 北京:人民卫生出版社,2005: 142, 166.
[12]
何舒婕,丁国芳. 早产儿呼吸暂停的管理[J]. 中国新生儿科杂志2015, 30(2): 155-158. DOI: 10.3969/j.issn.1673-6710.2015.02.022.
[13]
朱兴旺,闫军,冉琴,等. 无创高频振荡通气治疗新生儿呼吸窘迫综合征的初步研究[J].中华新生儿科杂志(中英文), 2017, 32(4): 291-294. DOI: 10.3760/cma.j.issn.2096-2932.2017.04.012.
[14]
刘颖,聂川,颜慧恒,等. 经鼻无创高频振荡通气与持续气道正压通气在早产儿呼吸窘迫综合征初始治疗中的效果比较[J]. 广东医学2020, 41(3): 229-233. DOI: 10.13820/j.cnki.gdyx.20191405.
[15]
Hadj-Ahmed MA, Samson N, Nadeau C, et al. Laryngeal muscle activity during nasal high-frequency oscillatory ventilation in nonsedated newborn lambs[J]. Neonatology, 2015, 107(3): 199-205. DOI: 10.1159/000369120.
[16]
Null DM, Alvord J, Leavitt W, et al. High-frequency nasal ventilation for 21 d maintains gas exchange with lower respiratory pressures and promotes alveolarization in preterm lambs[J]. Pediatr Res, 2014, 75(4): 507-516. DOI: 10.1038/pr.2013.254.
[17]
Fischer HS, Bohlin K, Bührer C, et al. Nasal high-frequency oscillation ventilation in neonates: a survey in five European countries[J]. Eur J Pediatr, 2015, 174(4): 465-471. DOI: 10.1007/s00431-014-2419-y.
[18]
喻斌,肖政辉. 加温湿化高流量鼻导管通气在儿科应用中的研究进展[J]. 中国小儿急救医学2017, 24(5): 378-382. DOI: 10.3760/cma.j.issn.1673-4912.2017.05.013.
[19]
Shoemaker MT, Pierce MR, Yoder BA, et al. High flow nasal cannula versus nasal CPAP for neonatal respiratory disease: a retrospective study[J]. J Perinatol, 2007, 27(2): 85-91. DOI: 10.1038/sj.jp.7211647.
[20]
Wilkinson D, Andersen C, O′Donnell CP, et al. High flow nasal cannula for respiratory support in preterm infants[J]. Cochrane Database Syst Rev, 2016, 2: CD006405. DOI: 10.1002/14651858.CD006405.pub3.
[1] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[2] 胡诤贇, 史建伟, 申建伟, 王冰, 蒋春苗, 刘冲. 基于机器学习鉴定早产儿支气管肺发育不良的关键基因[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 446-454.
[3] 李聪, 徐艳, 吴铭, 丁瑞东, 王军. 极低出生体重儿出生时血清25-羟维生素D水平与其生后早期喂养不耐受关系的临床分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 309-314.
[4] 李敏, 熊菲. 母乳成分及其影响因素的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 267-272.
[5] 周美岑, 王华, 母得志. 早产儿疫苗预防接种及时性[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 261-266.
[6] 杨萍, 许世敏, 李亮亮, 尹向云, 锡洪敏, 马丽丽, 李向红. 早产儿支气管肺发育不良合并代谢性骨病的影响因素[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 202-211.
[7] 苏永维, 陈果. 早产儿非心脏手术的麻醉管理[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 139-144.
[8] 张霭润, 招嘉樑, 李管明, 李嘉鸿, 陈静蓉, 王兰, 庄思齐, 房晓祎. 早产儿RhE合并Rhc溶血病1例并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 93-99.
[9] 张璐, 杨惠娟, 刘凯波. 2015—2021年北京市辅助生殖技术助孕活产及高龄孕母占比与不良妊娠结局变化趋势[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 46-53.
[10] 吕莉, 乔莉娜. 经鼻高流量氧疗治疗重症肺炎患儿的疗效[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 38-45.
[11] 袁冰, 颜凯. 人羊膜上皮干细胞治疗早产儿支气管肺发育不良的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 640-644.
[12] 宣瑞萍, 刘笑琴, 王平, 查日田. 无创正压通气与经鼻高流量氧疗治疗AECOPD合并Ⅱ型呼吸衰竭的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 346-348.
[13] 蔡金娥, 吴勇, 孙迎春. 经鼻无创DouPAP和nCPAP辅助PS在新生儿呼吸窘迫综合征的意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 829-831.
[14] 张童, 魏丽娟, 严梅. 乙酰半胱氨酸联合Auto-CPAP治疗OSAHS的临床分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 703-705.
[15] 李瑞琦, 吴子健, 吴杰斌, 任佳佳, 翟敬芳. 动脉血气分析判读Excel电子表格在实习生酸碱平衡紊乱教学中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(06): 737-743.
阅读次数
全文


摘要