切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (02) : 202 -211. doi: 10.3877/cma.j.issn.1673-5250.2023.02.012

论著

早产儿支气管肺发育不良合并代谢性骨病的影响因素
杨萍, 许世敏, 李亮亮, 尹向云, 锡洪敏, 马丽丽, 李向红()   
  1. 青岛大学附属医院新生儿科,青岛 266555
  • 收稿日期:2022-11-01 修回日期:2023-02-19 出版日期:2023-04-01
  • 通信作者: 李向红

Influencing factors of bronchopulmonary dysplasia complicated with metabolic bone disease in preterm infants

Ping Yang, Shimin Xu, Liangliang Li, Xiangyun Yin, Hongmin Xi, Lili Ma, Xianghong Li()   

  1. Neonatal Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266555, Shandong Province, China
  • Received:2022-11-01 Revised:2023-02-19 Published:2023-04-01
  • Corresponding author: Xianghong Li
  • Supported by:
    Medical and Health Science and Technology Development Program of Shandong Province(2016WS0278)
引用本文:

杨萍, 许世敏, 李亮亮, 尹向云, 锡洪敏, 马丽丽, 李向红. 早产儿支气管肺发育不良合并代谢性骨病的影响因素[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 202-211.

Ping Yang, Shimin Xu, Liangliang Li, Xiangyun Yin, Hongmin Xi, Lili Ma, Xianghong Li. Influencing factors of bronchopulmonary dysplasia complicated with metabolic bone disease in preterm infants[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(02): 202-211.

目的

探讨早产儿支气管肺发育不良(BPD)合并代谢性骨病(MBD)的临床高危因素。

方法

选取青岛大学附属医院新生儿重症监护病房(NICU)于2018年1月1日至2020年12月31日收治的151例BPD早产儿为研究对象,按照BPD早产儿是否合并MBD,将其分为BPD合并MBD组(n=41)和单纯BPD组(n=110)。采取回顾性分析法,对2组患儿的临床病例资料、除MBD外的其他并发症发生情况、无创正压通气与有创机械通气治疗时间、药物治疗情况、血清生化指标、肠内与肠外营养情况等进行分析。采用Pearson列联系数,对2组患儿的BPD严重程度与MBD相关性进行分析。再将单因素分析中有统计学意义的变量,纳入多因素非条件logistic回归分析,探讨BPD早产儿合并MBD的影响因素。本研究遵循的研究程序经青岛大学附属医院医学伦理委员会审批(QYFY WZLL 26771),并与所有患儿监护人签署书面知情同意书。

结果

①BPD合并MBD组患儿出生胎龄、出生体重,均低于单纯BPD组,并且差异有统计学意义(P<0.05)。②BPD合并MBD组早产儿无创正压通气时间和住院时间,均长于单纯BPD组,并且差异有统计学意义(P<0.05);BPD合并MBD组患儿住院期间新生儿败血症和新生儿坏死性小肠结肠炎(NEC)发生率,均高于单纯BPD组,并且差异亦有统计学意义(P<0.05)。③2组患儿生后第1、21天时,25-羟维生素D[25(OH)D]浓度、血清碱性磷酸酶(ALP)及血磷水平比较,差异均有统计学意义(P<0.05)。④BPD合并MBD组的患儿肠外营养时间和母乳喂养时间与达全肠内喂养日龄,均长于单纯BPD组,并且差异均有统计学意义(P<0.05);BPD合并MBD组生后第28天时,摄入总热量、肠内营养热量、肠内蛋白质及肠外氨基酸,均低于单纯BPD组,并且差异亦均有统计学意义(P<0.05)。⑤BPD合并MBD患儿的BPD严重程度与MBD呈显著正相关关系(r=0.381,P<0.001)。⑥BPD早产儿合并MBD影响因素的多因素非条件logistic回归分析结果显示,无创正压通气时间长(OR=1.043,95%CI:1.015~1.072,P=0.003)和肠外营养时间长(OR=1.041,95%CI:1.008~1.075,P=0.014),均为导致BPD早产儿发生MBD的独立危险因素;出生第21天时,BPD早产儿的血清25(OH)D水平升高是导致其发生MBD的独立保护因素(OR=0.919,95%CI:0.858~0.984,P=0.015)。

结论

生后3周内血清25(OH)D水平升高,可降低BPD早产儿发生MBD风险。对BPD早产儿生后早期,给予积极肠内营养支持,保证适宜的血清25(OH)D水平,并定期评估骨代谢指标,以期降低BPD早产儿发生MBD的几率,对已发生MBD的BPD合并MBD患儿,可改善其预后及远期结局。

Objective

To investigate the risk factors for bronchopulmonary dysplasia (BPD) combined with metabolic bone disease (MBD) in premature infants.

Methods

A total of 151 preterm infants with BPD admitted to Neonatal Intensive Care Unit (NICU) of the Affiliated Hospital of Qingdao University from January 1, 2018 to December 31, 2020 were selected into this study. According to whether BPD infants had MBD or not, they were divided into BPD complicated with MBD group (n=41) and BPD alone group (n=110). Retrospective analysis was performed to analyze the clinical case data, the occurrence of other complications except MBD, the treatment time of non-invasive positive pressure ventilation and invasive mechanical ventilation, drug treatment, serum biochemical indexes, enteral and parenteral nutrition between two groups.Pearson column correlation number was used to analyze the correlation between the severity of BPD and MBD between two groups. The statistically significant variables in the univariate analysis were included in the multivariate unconditional logistic regression analysis to explore influencing factors of BPD combined with MBD in preterm infants.The research procedures followed in this study were approved by the Medical Ethics Committee of the Affiliated Hospital of Qingdao University (QYFY WZLL 26771), and written informed consents were obtained from all guardians of the children.

Results

① The gestational age and birth weight of BPD complicated with MBD group were lower than those of BDP alone group, and the differences were statistically significant (P<0.05). ② The duration of non-invasive positive pressure ventilation and hospital stay of BPD complicated with MBD group were both longer than those in BPD alone group, and the difference was statistically significant (P<0.05). The incidence of neonatal sepsis and neonatal necrotizing enterocolitis (NEC) in BPD complicated with MBD group during hospitalization were higher than those in BPD alone group, and the difference were statistically significant (P<0.05). ③ There were statistically significant differences in the concentration of 25-hydroxyvitamin D[25 (OH) D], serum alkaline phosphatase (ALP) and blood phosphorus between two groups at the first and 21st day after the birth (P<0.05). ④ The parenteral nutrition time and breastfeeding time of BPD complicated with MBD group were longer than those of BPD alone group, and the differences were statistically significant (P<0.05). On the 28th day after birth, total calories, enteral nutrient calories, enteral protein and parenteral amino acids in BPD complicated with MBD group were lower than those in BPD alone group, and the differences were statistically significant (P<0.05). ⑤ There was a significant positive correlation between the severity of BPD and MBD in premature infants of BPD complicated with MBD (r=0.381, P<0.05). ⑥ Multivariate logistic regression analysis of MBD in premature infants with BPD showed that non-invasive positive pressure ventilation time (OR=1.043, 95%CI: 1.015-1.072, P=0.003) and parenteral nutrition time (OR=1.041, 95%CI: 1.008-1.075, P=0.014), all of which were independent risk factors for MBD in premature infants with BPD. Serum 25(OH)D level at day 21 of birth was an independent protective factor for MBD in premature infants with BPD (OR=0.919, 95%CI: 0.858 ~ 0.984, P=0.015).

Conclusions

Increased serum 25(OH)D level within 3 weeks after birth can reduce the risk of MBD in preterm infants with BPD. Early after birth, premature infants with BPD should be given active enteral nutrition support to ensure appropriate serum 25(OH)D level, and bone metabolism indexes should be evaluated regularly, so as to reduce the probability of developing MBD in premature infants with BPD, and to improve the prognosis and long-term outcome of children with BPD and MBD.

表1 2组BPD早产儿及其母亲一般情况比较
表2 2组BPD早产儿住院期间并发症发生率及辅助通气治疗时间比较
表3 2组BPD早产儿住院期间药物使用情况比较[例数(%)]
表4 2组BPD早产儿出生第1、21天生化指标比较(±s)
表5 BPD早产儿肠内、外营养比较
组别 例数 生后第7天
摄入总热量[kCal/(kg·d), ±s] 肠内营养热量[kCal/(kg·d), ±s] 肠内蛋白质[g/(kg·d), M(Q1Q3)] 肠外氨基酸[g/(kg·d),M(Q1Q3)]
单纯BPD组 110 91.4±14.1 12.4(4.7,22.3) 0.5(0.2,0.9) 3.3(2.9,3.5)
BPD合并MBD组 41 91.0±18.1 9.9(4.2,25.3) 0.4(0.2,1.0) 3.3(2.8,3.5)
统计值   t=0.13 Z=-0.13 Z=-0.13 Z=-0.23
P   0.900 0.898 0.897 0.816
组别 例数 生后第14天
摄入总热量[kCal/(kg·d), ±s] 肠内营养热量[kCal/(kg·d), ±s] 肠内蛋白质[g/(kg·d), ±s] 肠外氨基酸[g/(kg·d), M(Q1Q3)]
单纯BPD组 110 106.0±13.6 53.9±35.4 2.2±1.4 2.4(1.2,2.9)
BPD合并MBD组 41 102.3±14.5 44.9±30.2 1.8±1.2 2.6(1.77,3.2)
统计值   t=1.43 t=1.46 t=1.49 Z=-1.46
P   0.156 0.148 0.139 0.144
组别 例数 生后第28天
摄入总热量[kCal/(kg·d), ±s] 肠内营养热量[kCal/(kg·d), ±s] 肠内蛋白质[g/(kg·d), M(Q1Q3)] 肠外氨基酸[g/(kg·d), M(Q1Q3)]
单纯BPD组 110 118.3±16.6 102.8±37.6 4.3(3.2, 4.8) 0(0,1.3)
BPD合并MBD组 41 108.7±22.3 76.9±50.2 3.0(1.2, 4.3) 1.4(0,2.7)
统计值   t=2.87 t=-2.64 Z=-3.62 Z=-3.55
P   0.005 0.008 <0.001 <0.001
组别 例数 母乳喂养时间[d, M(Q1Q3)] 肠外营养时间[d, M(Q1Q3)] 添加母乳强化剂[例数(%)] 达全肠内喂养日龄[d, M(Q1Q3)]
单纯BPD组 110 52.0(8.0,67.1) 23.5(17.0,33.2) 70(63.6) 23.5(17.0,33.2)
BPD合并MBD组 41 66.5(35.5,92.5) 39.0(25.0,52.5) 29(70.7) 39.0(25.0,52.5)
统计值   -2.89 -4.42 0.67 -4.42
P   0.004 <0.001 0.414 <0.001
表6 BPD严重程度与MBD相关性分析[例数(%)]
表7 BPD早产儿合并MBD影响因素的多因素非条件logistic回归分析结果
[1]
Chacham S, Pasi R, Chegondi M, et al. Metabolic bone disease in premature neonates: an unmet challenge[J]. J Clin Res Pediatr Endocrinol, 2020, 12(4): 332-339. DOI: 10.4274/jcrpe.galenos.2019.2019.0091.
[2]
Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity: causes, recognition, prevention, treatment and long-term consequences[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(5): F560-F566. DOI: 10.1136/archdischild-2018-316330.
[3]
Figueras-Aloy J, lvarez-Domínguez E, Pérez-Fernández JM, et al. Metabolic bone disease and bone mineral density in very preterm infants[J]. J Pediatr, 2014, 164(3): 499-504. DOI: 10.1016/j.jpeds.2013.10.089.
[4]
Viswanathan S, Khasawneh W, McNelis K, et al. Metabolic bone disease: a continued challenge in extremely low birth weight infants[J]. JPEN J Parenter Enteral Nutr, 2014, 38(8): 982-990. DOI: 10.1177/0148607113499590.
[5]
Abrams SA, Committee on Nutrition. Calcium and vitamin D requirements of enterally fed preterm infants[J]. Pediatrics, 2013, 131(5): e1676-e1683. DOI: 10.1542/peds.2013-0420.
[6]
Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary dysplasia: executive summary of a workshop[J]. J Pediatr, 2018, 197: 300-308. DOI: 10.1016/j.jpeds.2018.01.043.
[7]
Harrison CM, Gibson AT. Osteopenia in preterm infants[J]. Arch Dis Child Fetal Neonatal Ed, 2013, 98(3): F272-275. DOI: 10.1136/archdischild-2011-301025.
[8]
常艳美,林新祝,张蓉,等. 早产儿代谢性骨病临床管理专家共识(2021年)[J]. 中国当代儿科杂志2021, 23(8): 761-772. DOI:10.7499/j.issn.1008-8830.2105152.
[9]
中国医师协会新生儿科医师分会循证专业委员会.早产儿喂养不耐受临床诊疗指南(2020)[J].中国当代儿科杂志2020,22(10):1047-1055.DOI:10.7499/j.issn.1008-8830.2008132.
[10]
Dutta S, Singh B, Chessell L, et al. Guidelines for feeding very low birth weight infants[J]. Nutrients, 2015, 7(1): 423-442. DOI: 10.3390/nu7010423.
[11]
Neonatal parenteral nutrition [M]. London: National Institute for Health and Care Excellence (NICE), 2020.
[12]
《中华儿科杂志》编辑委员会,中华医学会儿科学分会儿童保健学组,中华医学会儿科学分会新生儿学组. 早产、低出生体重儿出院后喂养建议[J]. 中华儿科杂志2016,54 (1): 6-12. DOI: 10.3760/cma.j.issn.0578-1310.2016.01.003
[13]
Sweet DG, Carnielli VP, Greisen G, et al. European consensus guidelines on the management of respiratory distress syndrome: 2022 update[J]. Neonatology, 2023, 120(1): 3-23. DOI: 10.1159/000528914.
[14]
李晋辉,母得志. 早产儿临床管理中的热点问题探讨[J/OL]. 中华妇幼临床医学杂志(电子版)2020,16 (1): 1-7. DOI: 10.3877/cma.j.issn.1673-5250.2020.01.001.
[15]
Tkach EK, White AM, Dysart KC, et al. Comparison of intact parathyroid hormone, alkaline phosphatase, phosphate levels for diagnosing severe metabolic bone disease in infants with severe bronchopulmonary dysplasia[J]. Am J Perinatol, 2017, 34(12): 1199-1204. DOI: 10.1055/s-0037-1602419.
[16]
Chin LK, Doan J, Teoh YS, et al. Outcomes of standardised approach to metabolic bone disease of prematurity[J]. J Paediatr Child Health, 2018, 54(6): 665-670. DOI: 10.1111/jpc.13813.
[17]
Gaio P, Verlato G, Daverio M, et al. Incidence of metabolic bone disease in preterm infants of birth weight<1 250 g and in those suffering from bronchopulmonary dysplasia[J]. Clin Nutr ESPEN, 2018, 23: 234-239. DOI: 10.1016/j.clnesp.2017.09.008.
[18]
Perrone M, Casirati A, Stagi S, et al. Don′t forget the bones: incidence and risk factors of metabolic bone disease in a Cohort of preterm infants[J]. Int J Mol Sci, 2022, 23(18): 10666. DOI: 10.3390/ijms231810666.
[19]
贺晓日,梁灿,俞元强,等. 极低/超低出生体重早产儿代谢性骨病危险因素的全国多中心调查[J].中国当代儿科杂志2021,23(6):555-562. DOI: 10.7499/j.issn.1008-8830.2012055.
[20]
Rayannavar A, Calabria AC. Screening for metabolic bone disease of prematurity[J]. Semin Fetal Neonatal Med, 2020, 25(1): 101086. DOI: 10.1016/j.siny.2020.101086.
[21]
Rigo J, Pieltain C, Salle B, et al. Enteral calcium, phosphate and vitamin D requirements and bone mineralization in preterm infants[J]. Acta Paediatr, 2007, 96(7): 969-974. DOI: 10.1111/j.1651-2227.2007.00336.x.
[22]
Kelly A, Kovatch KJ, Garber SJ. Metabolic bone disease screening practices among U.S. neonatologists[J]. Clin Pediatr (Phila), 2014, 53(11): 1077-1083. DOI: 10.1177/0009922814535661.
[23]
Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012[J]. JAMA, 2015, 314(10): 1039-1051. DOI: 10.1001/jama.2015.10244.
[24]
Horbar JD, Edwards EM, Greenberg LT, et al. Variation in performance of neonatal intensive care units in the united states[J]. JAMA Pediatr, 2017, 171(3): e164396. DOI: 10.1001/jamapediatrics.2016.4396.
[25]
Montaner RA, Fernández EC, Calmarza CP, et al. Risk factors and biochemical markers in metabolic bone disease of premature newborns[J]. Rev Chil Pediatr, 2017, 88(4): 487-494. DOI: 10.4067/S0370-41062017000400007.
[26]
Schulzke SM, Kaempfen S, Trachsel D, et al. Physical activity programs for promoting bone mineralization and growth in preterm infants[J]. Cochrane Database Syst Rev, 2014, 4: CD005387. DOI: 10.1002/14651858.CD005387.pub3.
[27]
Hay WW Jr. Strategies for feeding the preterm infant[J]. Neonatology, 2008, 94(4): 245-254. DOI: 10.1159/000151643.
[28]
Nehra D, Carlson SJ, Fallon EM, et al. A.S.P.E.N. clinical guidelines: nutrition support of neonatal patients at risk for metabolic bone disease[J]. JPEN J Parenter Enteral Nutr, 2013, 37(5): 570-598. DOI: 10.1177/0148607113487216.
[29]
Cakir M, Mungan I, Karahan C, et al. Necrotizing enterocolitis increases the bone resorption in premature infants[J]. Early Hum Dev, 2006, 82(6): 405-409. DOI: 10.1016/j.earlhumdev.2005.10.015.
[30]
徐佳鑫,李向红,王小虎,等. 早产儿代谢性骨病的临床高危因素分析[J].中华临床营养杂志2019,27(6):374-380. DOI: 10.3760/cma.j.issn.1674-635X.2019.06.008.
[31]
Jensen EA, White AM, Liu P, et al. Determinants of severe metabolic bone disease in very low-birth-weight infants with severe bronchopulmonary dysplasia admitted to a tertiary referral center[J]. Am J Perinatol, 2016, 33(1): 107-113. DOI: 10.1055/s-0035-1560043.
[32]
苏志文,林黎黎,黄小霞,等. 超早产儿与超低出生体质量儿支气管肺发育不良的性别差异[J]. 发育医学电子杂志2022, 10(4): 283-289.
[33]
Mitchell SM, Rogers SP, Hicks PD, et al. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support[J]. BMC Pediatr, 2009, 9: 47. DOI: 10.1186/1471-2431-9-47.
[34]
Moya F, Sisk PM, Walsh KR, et al. A new liquid human milk fortifier and linear growth in preterm infants[J]. Pediatrics, 2012, 130(4): e928-935. DOI: 10.1542/peds.2011-3120.
[35]
O′Connor DL, Jacobs J, Hall R, et al. Growth and development of premature infants fed predominantly human milk, predominantly premature infant formula, or a combination of human milk and premature formula[J]. J Pediatr Gastroenterol Nutr, 2003, 37(4): 437-446. DOI: 10.1097/00005176-200310000-00008.
[36]
Rauch F, Schoenau E. Skeletal development in premature infants: a review of bone physiology beyond nutritional aspects[J]. Arch Dis Child Fetal Neonatal Ed, 2002, 86(2): F82-F85. DOI: 10.1136/fn.86.2.f82.
[37]
Meneghelli M, Pasinato A, Salvadori S, et al. Bone status in preterm infant: influences of different nutritional regimens and possible markers of bone disease[J]. J Perinatol, 2016, 36(5): 394-400. DOI: 10.1038/jp.2015.212.
[38]
Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline[J]. J Clin Endocrinol Metab, 2011, 96(7): 1911-1930. DOI: 10.1210/jc.2011-0385.
[39]
Wolsk HM, Chawes BL, Litonjua AA, et al. Prenatal vitamin D supplementation reduces risk of asthma/recurrent wheeze in early childhood: a combined analysis of two randomized controlled trials[J]. PLoS One, 2017, 12(10): e0186657. DOI: 10.1371/journal.pone.0186657.
[40]
Sassi F, Tamone C, D′Amelio P. Vitamin D: nutrient, hormone, and immunomodulator[J]. Nutrients, 2018, 10(11): 1656. DOI: 10.3390/nu10111656.
[41]
Patwardhan G, Soni A, Rachwani N, et al. Factors associated with time to full feeds in preterm very low birth weight infants[J]. J Trop Pediatr, 2018, 64(6): 495-500. DOI: 10.1093/tropej/fmx102.
[1] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[2] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[3] 黄应雄, 叶子, 蒋鹏, 詹红, 姚陈, 崔冀. 急性肠系膜静脉血栓形成致透壁性肠坏死的临床危险因素分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 413-421.
[4] 张再博, 王冰雨, 焦志凯, 檀碧波. 胃癌术后下肢深静脉血栓危险因素的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 475-480.
[5] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[6] 吴方园, 孙霞, 林昌锋, 张震生. HBV相关肝硬化合并急性上消化道出血的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 45-47.
[7] 陈旭渊, 罗仕云, 李文忠, 李毅. 腺源性肛瘘经手术治疗后创面愈合困难的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 82-85.
[8] 毛永欢, 仝瀚文, 缪骥, 王行舟, 沈晓菲, 喻春钊. 造口旁疝危险因素预测模型构建[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 682-687.
[9] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[10] 侯超, 潘美辰, 吴文明, 黄兴广, 李翔, 程凌雪, 朱玉轩, 李文波. 早期食管癌及上皮内瘤变内镜黏膜下剥离术后食管狭窄的危险因素[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 383-387.
[11] 张雯, 宋牡丹, 邓雪婷, 张云. 强化营养支持辅助奥曲肽治疗肝硬化合并食管胃底静脉曲张破裂出血的疗效及再出血危险因素[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 456-460.
[12] 陆猛桂, 黄斌, 李秋林, 何媛梅. 蜂蛰伤患者发生多器官功能障碍综合征的危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1010-1015.
[13] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[14] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[15] 孟科, 李燕, 闫婧爽, 闫斌. 胶囊内镜胃通过时间的影响因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 671-675.
阅读次数
全文


摘要