[1] |
Poretti A, Blaser SI, Lequin MH, et al. Neonatal neuroimaging findings in inborn errors of metabolism[J]. J Magn Reson Imaging, 2013, 37(2):294-312. DOI: 10.1002/jmri.23693.
|
[2] |
Mordaunt D, Cox D, Fuller M. Metabolomics to improve the diagnostic efficiency of inborn errors of metabolism[J]. Int J Mol Sci, 2020, 21(4): 1195. DOI: 10.3390/ijms21041195.
|
[3] |
Altimimi HA, Aljawadi HF, Ali EA. Inborn errors of metabolism in children with unexplained developmental delay in Misan, Iraq[J]. Oman Med J, 2019, 34(4):297-301. DOI: 10.5001/omj.2019.59.
|
[4] |
Sanderson S, Green A, Preece MA, et al. The incidence of inherited metabolic disorders in the West Midlands, UK[J]. Arch Dis Child, 2006, 91(11):896-899. DOI: 10.1136/adc.2005.091637.
|
[5] |
Fabie N, Pappas KB, Feldman GL. The current state of newborn screening in the United States[J]. Pediatr Clin North Am, 2019, 66(2):369-386. DOI: 10.1016/j.pcl.2018.12.007.
|
[6] |
|
[7] |
Varela B, Pacheco G. Comprehensive evaluation of the internal and external quality control to redefine analytical quality goals[J]. Biochem Med (Zagreb), 2018, 28(2):020710. DOI: 10.11613/BM.2018.020710.
|
[8] |
Argmann CA, Houten SM, Zhu J, et al. A next generation multiscale view of inborn errors of metabolism[J]. Cell Metab, 2016, 23(1):13-26. DOI: 10.1016/j.cmet.2015.11.012.
|
[9] |
Burlina AB, Corsello G. Survey of Italian pediatricians′ perspectives and knowledge about neonatal screening[J]. Ital J Pediatr, 2015, 41:41. DOI: 10.1186/s13052-015-0147-1.
|
[10] |
Wang T, Ma J, Zhang Q, et al. Expanded newborn screening for inborn errors of metabolism by tandem mass spectrometry in Suzhou, China: disease spectrum, prevalence, genetic characteristics in a Chinese population[J]. Front Genet, 2019, 10:1052. DOI: 10.3389/fgene.2019.01052.
|
[11] |
De Jesús VR, Chace DH, Lim TH, et al. Comparison of amino acids and acylcarnitines assay methods used in newborn screening assays by tandem mass spectrometry[J]. Clin Chim Acta, 2010, 411(9-10):684-689. DOI: 10.1016/j.cca.2010.01.034.
|
[12] |
|
[13] |
Smon A, Repic Lampret B, Groselj U, et al. Next generation sequencing as a follow-up test in an expanded newborn screening programme[J]. Clin Biochem, 2018, 52:48-55. DOI: 10.1016/j.clinbiochem.2017.10.016.
|
[14] |
Shibata N, Hasegawa Y, Yamada K, et al. Diversity in the incidence and spectrum of organic acidemias, fatty acid oxidation disorders, and amino acid disorders in Asian countries: selective screening vs. expanded newborn screening[J]. Mol Genet Metab Rep, 2018, 16:5-10. DOI: 10.1016/j.ymgmr.2018.05.003.
|
[15] |
|
[16] |
Yang C, Zhou C, Xu P, et al. Newborn screening and diagnosis of inborn errors of metabolism: a 5-year study in an eastern Chinese population[J]. Clin Chim Acta, 2020, 502:133-138. DOI: 10.1016/j.cca.2019.12.022.
|
[17] |
Magera MJ, Gunawardena ND, Hahn SH, et al. Quantitative determination of succinylacetone in dried blood spots for newborn screening of tyrosinemia type Ⅰ[J]. Mol Genet Metab, 2006, 88(1):16-21. DOI: 10.1016/j.ymgme.2005.12.005.
|
[18] |
顾学范.临床遗传代谢病[M]. 北京:人民卫生出版社,2015:37-120.
|
[19] |
Yuskiv N, Potter BK, Stockler S, et al. Nutritional management of phenylalanine hydroxylase (PAH) deficiency in pediatric patients in Canada: a survey of dietitians′ current practices[J]. Orphanet J Rare Dis, 2019, 14(1):7. DOI: 10.1186/s13023-018-0978-0.
|
[20] |
Aldubayan SH, Rodan LH, Berry GT, et al. Acute illness protocol for organic acidemias: methylmalonic acidemia and propionic acidemia[J]. Pediatr Emerg Care, 2017, 33(2):142-146. DOI: 10.1097/PEC.0000000000001028.
|
[21] |
|
[22] |
Zhang W, Yang Y, Peng W, et al. A 7-year report of spectrum of inborn errors of metabolism on full-term and premature infants in a Chinese neonatal intensive care unit[J]. Front Genet, 2019, 10:1302. DOI: 10.3389/fgene.2019.01302.
|
[23] |
Rose EC, di San Filippo CA, Ndukwe Erlingsson UC, et al. Genotype-phenotype correlation in primary carnitine deficiency[J]. Hum Mutat, 2012, 33(1):118-123. DOI: 10.1002/humu.21607.
|
[24] |
|