切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (01) : 30 -36. doi: 10.3877/cma.j.issn.1673-5250.2021.01.005

所属专题: 经典病例 文献

论著

海南省少数民族地区37 482例新生儿遗传代谢病筛查结果分析
石海杰1,1, 赵振东2,,2()   
  • 收稿日期:2020-07-09 修回日期:2021-01-10 出版日期:2021-02-01
  • 通信作者: 赵振东

Analysis of 37 482 newborns screened for inborn errors metabolism in minority nationality regions of Hainan Province

Haijie Shi1,1, Zhendong Zhao2,2,()   

  • Received:2020-07-09 Revised:2021-01-10 Published:2021-02-01
  • Corresponding author: Zhendong Zhao
  • Supported by:
    Major Science and Technology Project of Hainan Province(ZDKJ2017007)
引用本文:

石海杰, 赵振东. 海南省少数民族地区37 482例新生儿遗传代谢病筛查结果分析[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(01): 30-36.

Haijie Shi, Zhendong Zhao. Analysis of 37 482 newborns screened for inborn errors metabolism in minority nationality regions of Hainan Province[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(01): 30-36.

目的

探讨海南省少数民族地区新生儿多种遗传代谢病(IEM)的发病情况。

方法

选择2018年1月1日至2020年1月31日,在海南省少数民族地区出生、监护人同意进行新生儿IEM筛查的37 482例新生儿为研究对象。采用串联质谱法,对新生儿足跟血(滤纸干血斑标本)进行新生儿多种IEM筛查,对结果疑似IEM的部分新生儿,釆集外周血进行基因检测,以确诊其IEM种类、基因突变情况。采用χ2检验,对海南省少数民族地区男性与女性患儿IEM最低发病率进行统计学比较。本研究经海南省人民医院医学伦理委员会批准[审批文号:医伦(2018)第14号]。

结果

①海南省少数民族地区上述研究时间内出生的38 586例活产新生儿中,37 482例接受IEM筛查,新生儿IEM筛查覆盖率为97.1%。②37 482例新生儿中,筛查结果疑似IEM的新生儿为89例,其中24例接受基因检测,19例确诊为IEM,24例疑似IEM新生儿的IEM确诊率为79.2%(19/24)。由于仅部分可疑IEM新生儿接受基因检测,故海南省少数民族地区新生儿IEM最低发病率为51/10万(19/37 482)。其中,男性新生儿IEM最低发病率为57/10万(12/21 136),女性为43/10万(7/16 346),二者比较,差异无统计学意义(χ2=0.354、P=0.552)。③19例确诊IEM新生儿均发生基因突变,其中氨基酸代谢病为5例、有机酸代谢病为5例、尿素循环障碍为2例、脂肪酸β氧化代谢障碍为7例。

结论

海南省少数民族地区新生儿IEM发病率较高、种类较多。建议在海南省少数民族地区开展新生儿多种IEM筛查,改善IEM新生儿生活质量。

Objective

To explore the incidence of various inborn errors metabolism (IEM) in newborns in minority nationality regions of Hainan Province.

Methods

A total of 37 482 newborns born from January 1, 2018 to January 31, 2020 in minority nationality regions of Hainan Province were selected as research subjects. All guardians of these newborns agreed to be screened for IEM. Tandem mass spectrometry was used to screen neonatal heel blood (dried blood spots of disk bioassay) for various IEM. For part of newborns whose screening results were suspicious of IEM, their peripheral blood were collected and sent out for genetic testing to confirm the types of IEM and genetic mutations.The lowest incidence of IEM between male and female children in minority nationality regions of Hainan Province were compared statistically by chi-square test. This study was approved by the Medical Ethics Committee of Hainan General Hospital [Approval No. Medical Ethics (2018) No. 14].

Results

① Among 38 586 live births in research regions during the research period, there were 37 482 cases received IEM screening, and the coverage rate of neonatal IEM screening was 97.1%. ②Among 37 482 newborns, 89 of them were suspected of IEM. Among 89 suspected of IEM newborns, 24 of them were conducted genetic testing, and 19 were firmly diagnosed as IEM. The diagnostic rate of IEM in 24 suspected newborns was 79.2% (19/24).Because only part of newborns with suspected IEM received genetic testing, the lowest incidence of IEM among newborns in the research regions was 51/100 000 (19/37 482). In this study, the lowest incidence of IEM were 57/100 000 (12/21 136) for males and 43/100 000 (7/16 346) for females newborns, and there was no significant difference between them (χ2=0.354, P=0.552). ③ Among 19 newborns with firmly diagnosis of IEM all had gene mutations, and there were 5 cases of aminoacidopathy, 5 cases of organic acid metabolism disorder, 2 cases of urea circulation disorder and 7 cases of fatty acid β oxidation metabolism disorder, respectively.

Conclusions

The incidence of IEM in newborns in the research regions was relatively high and with many types.We suggest that various IEM screening should be carried out among newborns in minority nationality regions of Hainan Province to improve life quality of IEM newborns.

图1 1例高苯丙氨酸血症患儿(No.1,男性,1个月龄)及其父母PAH基因Sanger法测序图[图1A:患儿为c.464G>A杂合突变(红色箭头所示);图1B:患儿为c.158G>A杂合突变(红色箭头所示);图1C:患儿母亲为c.464G>A杂合突变(红色箭头所示);图1D:患儿父亲为c.158G>A杂合突变(红色箭头所示)](患儿c.464G>A杂合突变来源于其母亲,c.158G>A杂合突变来源于其父亲)
图2 1例3-甲基-戊烯二酸尿症Ⅰ型患儿(No.7,女性,4个月龄)及其母亲AUH基因Sanger法测序图[图2A:患儿为c.809A>G杂合突变(红色箭头所示);图2B:患儿为c.154C>T杂合突变(红色箭头所示);图2C:患儿母亲为c.809A>G杂合突变(红色箭头所示);图2D:患儿母亲为c.154C>T杂合突变(红色箭头所示)](患儿c.809A>G复合c.154C>T杂合突变均来源于其母亲)
图3 1例原发性肉碱缺乏症患儿(No.14,男性,1个月龄)及其父母SLC22A5基因Sanger法测序图[图3A:患儿为c.706C>T纯合突变(红色箭头所示);图3B、3C:患儿父亲、母亲均为c.706C>T杂合突变(红色箭头所示)](患儿c.760C>T纯合突变来源于其父母)
表1 海南省少数民族地区19例IEM新生儿疾病名称、基因突变及遗传方式
病例(No.) 确诊疾病 发生突变基因 基因突变 纯合/杂合突变 遗传方式
1~5 氨基酸代谢病        
1   HPA PAH 第5外显子c.464G>A(p.R155H)及第2外显子c.158G>A(p.R53H) 杂合突变 AR
2   HPA PTS 第6外显子c.317C>T(p.T106M)及第3外显子c.155A>G(p.N52S) 杂合突变 AR
3   高甲硫氨酸血症 MAT1A 第8外显子c.1070C>T(p.P357L)及第7外显子c.791G>A(p.R264H) 杂合突变 AD、AR
4   高组氨酸血症 HAL 第13外显子c.1076G>A(p.R359H) 纯合突变 AD、AR
5   酪氨酸血症Ⅰ型 FAH 第13外显子c.1121A>T(p.D374V) 纯合突变 AR
6~10 有机酸代谢病        
6   3-甲基巴豆酰辅酶A羧化酶缺乏症 MCCC1 第7外显子c.1894C>T(p.P632S)及第2外显子c.1331G>A(p.R444H) 杂合突变 AR
7   3-甲基-戊烯二酸尿症Ⅰ型 AUH 第7外显子c.809A>G(p.K270R)及第1外显子c.154C>T(p.Q52X) 杂合突变 AR
8   戊二酸血症 SUGCT 第4外显子c.286delG(p.V96lfs*28) 纯合突变 AR
9   甲基丙二酸血症 MMA 第3外显子c.456delT(p.G153vfs*8)及第4外显子c.650T>A(p.L217X) 杂合突变 AR
10   甲基丙二酸伴同型半光氨酸血症 HCF1 第17外显子c.3409C>T(p.R1137W) 半合突变 XR
11~12 尿素循环障碍        
11   希特林蛋白缺乏症 SLC25A13 第9外显子c.852-855delTATG(p.R284fs)及第7外显子c.741C>G(p.C247W) 杂合突变 AR
12   精氨酸血症 ARG1 第1外显子c.57G>A(p.Q19Q) 纯合突变 AR
13~19 脂肪酸β氧化代谢障碍        
13   PCD SLC22A5 第4外显子c.760C>T(p.R254X)及第8外显子c.1400C>G(p.S467C) 杂合突变 AR
14   PCD LC22A5 第4外显子c.760C>T(p.R254X) 纯合突变 AR
15   PCD LC22A5 第1外显子c.51C>G(p.F17L)及第4外显子c.760C>T(p.R254X) 杂合突变 AR
16   PCD LC22A5 第4外显子c.760C>T(p.R254X) 纯合突变 AR
17   PCD LC22A5 第1外显子c.51C>G(p.F17L) 纯合突变 AR
18   短链酰基辅酶A脱氢酶缺乏症 ACADS 第7外显子c.889C>T(p.R297C)及第3外显子c.256G>A(p.E86K) 杂合突变 AR
19   肉碱棕榈酰转移酶Ⅱ缺乏症 CPT2 第4外显子c.1408G>T(p.A470S) 纯合突变 AD、AR
[1]
Poretti A, Blaser SI, Lequin MH, et al. Neonatal neuroimaging findings in inborn errors of metabolism[J]. J Magn Reson Imaging, 2013, 37(2):294-312. DOI: 10.1002/jmri.23693.
[2]
Mordaunt D, Cox D, Fuller M. Metabolomics to improve the diagnostic efficiency of inborn errors of metabolism[J]. Int J Mol Sci, 2020, 21(4): 1195. DOI: 10.3390/ijms21041195.
[3]
Altimimi HA, Aljawadi HF, Ali EA. Inborn errors of metabolism in children with unexplained developmental delay in Misan, Iraq[J]. Oman Med J, 2019, 34(4):297-301. DOI: 10.5001/omj.2019.59.
[4]
Sanderson S, Green A, Preece MA, et al. The incidence of inherited metabolic disorders in the West Midlands, UK[J]. Arch Dis Child, 2006, 91(11):896-899. DOI: 10.1136/adc.2005.091637.
[5]
Fabie N, Pappas KB, Feldman GL. The current state of newborn screening in the United States[J]. Pediatr Clin North Am, 2019, 66(2):369-386. DOI: 10.1016/j.pcl.2018.12.007.
[6]
中华人民共和国国家卫生健康委员会. 新生儿疾病筛查管理办法[J]. 中华儿科杂志,2009, 47(9): 672-673.DOI: 10.3760/cma.j.issn.0578-1310.2009.09.009.
[7]
Varela B, Pacheco G. Comprehensive evaluation of the internal and external quality control to redefine analytical quality goals[J]. Biochem Med (Zagreb), 2018, 28(2):020710. DOI:10.11613/BM.2018.020710.
[8]
Argmann CA, Houten SM, Zhu J, et al. A next generation multiscale view of inborn errors of metabolism[J]. Cell Metab, 2016, 23(1):13-26. DOI: 10.1016/j.cmet.2015.11.012.
[9]
Burlina AB, Corsello G. Survey of Italian pediatricians′ perspectives and knowledge about neonatal screening[J]. Ital J Pediatr, 2015, 41:41. DOI: 10.1186/s13052-015-0147-1.
[10]
Wang T, Ma J, Zhang Q, et al. Expanded newborn screening for inborn errors of metabolism by tandem mass spectrometry in Suzhou, China: disease spectrum, prevalence, genetic characteristics in a Chinese population[J]. Front Genet, 2019, 10:1052. DOI: 10.3389/fgene.2019.01052.
[11]
De Jesús VR, Chace DH, Lim TH, et al. Comparison of amino acids and acylcarnitines assay methods used in newborn screening assays by tandem mass spectrometry[J]. Clin Chim Acta, 2010, 411(9-10):684-689. DOI: 10.1016/j.cca.2010.01.034.
[12]
张志强,赵雨香,曾业熙. 广东惠州地区新生儿5 000例应用串联质谱技术筛查遗传代谢病的结果及跟踪随访分析[J]. 中国医学创新,2019, 16(30):80-83. DOI: 10.3969/j.issn.1674-4985.2019.30.021.
[13]
Smon A, Repic Lampret B, Groselj U, et al. Next generation sequencing as a follow-up test in an expanded newborn screening programme[J]. Clin Biochem, 2018, 52:48-55. DOI: 10.1016/j.clinbiochem.2017.10.016.
[14]
Shibata N, Hasegawa Y, Yamada K, et al. Diversity in the incidence and spectrum of organic acidemias, fatty acid oxidation disorders, and amino acid disorders in Asian countries: selective screening vs. expanded newborn screening[J]. Mol Genet Metab Rep, 2018, 16:5-10. DOI: 10.1016/j.ymgmr.2018.05.003.
[15]
顾学范. 儿童遗传代谢病的诊断和预防[J]. 诊断学理论与实践,2014, 13(1):7-11. DOI: 10.3969/j.issn.1671-2870.2014.01.003.
[16]
Yang C, Zhou C, Xu P, et al. Newborn screening and diagnosis of inborn errors of metabolism: a 5-year study in an eastern Chinese population[J]. Clin Chim Acta, 2020, 502:133-138. DOI: 10.1016/j.cca.2019.12.022.
[17]
Magera MJ, Gunawardena ND, Hahn SH, et al. Quantitative determination of succinylacetone in dried blood spots for newborn screening of tyrosinemia type Ⅰ[J]. Mol Genet Metab, 2006, 88(1):16-21. DOI: 10.1016/j.ymgme.2005.12.005.
[18]
顾学范.临床遗传代谢病[M]. 北京:人民卫生出版社,2015:37-120.
[19]
Yuskiv N, Potter BK, Stockler S, et al. Nutritional management of phenylalanine hydroxylase (PAH) deficiency in pediatric patients in Canada: a survey of dietitians′ current practices[J]. Orphanet J Rare Dis, 2019, 14(1):7. DOI: 10.1186/s13023-018-0978-0.
[20]
Aldubayan SH, Rodan LH, Berry GT, et al. Acute illness protocol for organic acidemias: methylmalonic acidemia and propionic acidemia[J]. Pediatr Emerg Care, 2017, 33(2):142-146. DOI: 10.1097/PEC.0000000000001028.
[21]
鄂慧姝,韩连书,叶军,等. 甲基丙二酸血症cblA型12例分析[J]. 中华医学遗传学杂志,2020, 37(2): 101-105. DOI: 10.3760/cma.j.issn.1003-9406.2020.02.001.
[22]
Zhang W, Yang Y, Peng W, et al. A 7-year report of spectrum of inborn errors of metabolism on full-term and premature infants in a Chinese neonatal intensive care unit[J]. Front Genet, 2019, 10:1302. DOI: 10.3389/fgene.2019.01302.
[23]
Rose EC, di San Filippo CA, Ndukwe Erlingsson UC, et al. Genotype-phenotype correlation in primary carnitine deficiency[J]. Hum Mutat, 2012, 33(1):118-123. DOI: 10.1002/humu.21607.
[24]
赵振东,王洁,谢曼芳,等. 海南省少数民族自治市县原发性肉碱缺乏症筛查分析[J]. 中华检验医学杂志,2019, 42(4):293-296. DOI: 10.3760/cma.j.issn.1009-8158.2019.04.012.
[1] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[2] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[3] 吴群, 张鑫, 李培, 王芳韵, 郑淋, 卫海燕, 马宁. 孤立型主动脉缩窄的超声心动图诊断及术后随访研究[J]. 中华医学超声杂志(电子版), 2023, 20(06): 642-646.
[4] 赵敏, 施依璐, 段莎莎, 王雅皙, 赵捷, 赵海玥, 张璐, 白天昊, 张小杉. RGD微泡介导高频超声造影对类风湿性关节炎滑膜新生血管的定量评估[J]. 中华医学超声杂志(电子版), 2023, 20(05): 530-536.
[5] 李博, 孔德璇, 彭芳华, 吴文瑛. 超声在胎儿肺静脉异位引流诊断中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(04): 437-441.
[6] 杨皓媛, 龚杰, 邹青伟, 阮航. 哮喘孕妇的母婴不良妊娠结局研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 522-529.
[7] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[8] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[9] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[10] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[11] 胡诤贇, 史建伟, 申建伟, 王冰, 蒋春苗, 刘冲. 基于机器学习鉴定早产儿支气管肺发育不良的关键基因[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 446-454.
[12] 张海金, 王增国, 蔡慧君, 赵炳彤. 2020至2022年西安市儿童医院新生儿细菌感染分布及耐药监测分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 222-229.
[13] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[14] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[15] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要