[1] |
Newburger JW. Kawasaki disease: state of the art[J]. Congenit Heart Dis, 2017, 12(5): 633-635.
|
[2] |
Daniels LB, Burns JC. Adjunctive testing in the evaluation of adults after Kawasaki disease[J]. Circ J, 2015, 79(11): 2299-2305.
|
[3] |
McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American heart association[J]. Circulation, 2017, 135(17): e927-e999.
|
[4] |
Onouchi Y. The genetics of Kawasaki disease[J]. Int J Rheum Dis, 2018, 21(1): 26-30.
|
[5] |
Kataoka M, Wang DZ. Non-coding RNAs including miRNAs and lncRNAs in cardiovascular biology and disease[J]. Cells, 2014, 3(3): 883-898.
|
[6] |
Wang H, Peng R, Wang J, et al. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage[J]. Clin Epigenetics, 2018, 10(1): 59.
|
[7] |
Mohr AM, Mott JL. Overview of microRNA biology[J]. Semin Liver Dis, 2015, 35(1): 3-11.
|
[8] |
Shimizu C, Kim J, Stepanowsky P, et al. Differential expression of miR-145 in children with Kawasaki disease[J]. PLoS One, 2013, 8(3): e58159.
|
[9] |
Ni FF, Li CR, Li Q, et al. Regulatory T cell microRNA expression changes in children with acute Kawasaki disease[J]. Clin Exp Immunol, 2014, 178(2): 384-393.
|
[10] |
褚茂平,胡晨,周爱华,等. 川崎病血清特异相关miR-23a对人脐静脉内皮细胞生长及迁移的影响[J]. 温州医科大学学报,2015, 45(5): 321-326.
|
[11] |
Chu M, Wu R, Qin S, et al. Bone marrow-derived microRNA-223 works as an endocrine genetic signal in vascular endothelial cells and participates in vascular injury from Kawasaki disease[J]. J Am Heart Assoc, 2017, 6(2): e004878.
|
[12] |
He M, Chen Z, Martin M, et al. miR-483 targeting of CTGF suppresses endothelial-to-mesenchymal transition: therapeutic implications in Kawasaki disease[J]. Circ Res, 2017, 120(2): 354365.
|
[13] |
Wu R, Shen D, Sohun H, et al. miR-186, a serum microRNA, induces endothelial cell apoptosis by targeting SMAD6 in Kawasaki disease[J]. Int J Mol Med, 2018, 41(4): 1899-1908.
|
[14] |
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs[J]. Annu Rev Biochem, 2012, 81: 145-166.
|
[15] |
Salviano-Silva A, Lobo-Alves SC, Almeida RC, et al. Besides pathology: long non-coding RNA in cell and tissue homeostasis[J]. Noncoding RNA, 2018, 4(1): 3.
|
[16] |
Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease[J]. Cell, 2013, 152(6): 1298-1307.
|
[17] |
Li Z, Chao TC, Chang KY, et al. The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL[J]. Proc Natl Acad Sci USA, 2014, 111(3): 1002-1007.
|
[18] |
刘秉文,陈俊杰. 医学分子生物学[M]. 2版. 北京:中国协和医科大学出版社,2005: 532-533.
|
[19] |
Suppers A, van Gool AJ, Wessels HJCT. Integrated chemometrics and statistics to drive successful proteomics biomarker discovery[J]. Proteomes, 2018, 6(2): 20.
|
[20] |
Yu HR, Kuo HC, Sheen JM, et al. A unique plasma proteomic profiling with imbalanced fibrinogen cascade in patients with Kawasaki disease[J]. Pediatr Allergy Immunol, 2009, 20(7): 699-707.
|
[21] |
Kentsis A, Shulman A, Ahmed S, et al. Urine proteomics for discovery of improved diagnostic markers of Kawasaki disease[J]. EMBO Mol Med, 2013, 5(2): 210-220.
|
[22] |
Zhang L, Jia HL, Huang WM, et al. Monitoring of the serum proteome in Kawasaki disease patients before and after immunoglobulin therapy[J]. Biochem Biophys Res Commun, 2014, 447(1): 19-25.
|
[23] |
Kuo HC, Huang YH, Chung FH, et al. Antibody profiling of Kawasaki disease using escherichia coli proteome microarrays[J]. Mol Cell Proteomics, 2018, 17(3): 472-481.
|
[24] |
Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity[J]. Gut Microbes, 2012, 3(1): 4-14.
|
[25] |
Liu W, Liu C, Zhang L, et al. Molecular basis of coronary artery dilation and aneurysms in patients with Kawasaki disease based on differential protein expression[J]. Mol Med Rep, 2018, 17(2): 2402-2414.
|
[26] |
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30(1): 255-289.
|
[27] |
Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives[J]. Proteomics, 2008, 8(19): 4083-4099.
|
[28] |
Sluijter JP, Verhage V, Deddens JC, et al. Microvesicles and exosomes for intracardiac communication[J]. Cardiovasc Res, 2014, 102(2): 302-311.
|
[29] |
Zhang L, Wang W, Bai J, et al. Proteomic analysis associated with coronary artery dilatation caused by Kawasaki disease using serum exosomes[J]. Rev Port Cardiol, 2016, 35(5): 265-273.
|
[30] |
Zhang L, Song QF, Jin JJ, et al. Differential protein analysis of serum exosomes post-intravenous immunoglobulin therapy in patients with Kawasaki disease[J]. Cardiol Young, 2017, 27(9): 1786-1796.
|