切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2018, Vol. 14 ›› Issue (03) : 260 -269. doi: 10.3877/cma.j.issn.1673-5250.2018.03.003

所属专题: 文献

论著

乙酰肝素酶调控滋养细胞中细胞因子表达及其对滋养细胞作用的潜在分子机制预测
车光璐1, 王艳云2, 张林1,()   
  1. 1. 610041 成都,四川大学华西基础医学与法医学院免疫学教研室;610041 成都,四川大学华西第二医院分子与转化医学实验室
    2. 610041 成都,四川大学华西第二医院分子与转化医学实验室
  • 收稿日期:2017-12-22 修回日期:2018-02-12 出版日期:2018-06-01
  • 通信作者: 张林

Regulation of heparanase on the expression of cytokines and the prediction of its molecular mechanism in trophoblast cells

Guanglu Che1, Yanyun Wang2, Lin Zhang1,()   

  1. 1. Department of Immunology, West China School of Preclinical & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China; Laboratory of Molecular Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
    2. Laboratory of Molecular Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2017-12-22 Revised:2018-02-12 Published:2018-06-01
  • Corresponding author: Lin Zhang
  • About author:
    Corresponding author: Zhang Lin, Email:
引用本文:

车光璐, 王艳云, 张林. 乙酰肝素酶调控滋养细胞中细胞因子表达及其对滋养细胞作用的潜在分子机制预测[J]. 中华妇幼临床医学杂志(电子版), 2018, 14(03): 260-269.

Guanglu Che, Yanyun Wang, Lin Zhang. Regulation of heparanase on the expression of cytokines and the prediction of its molecular mechanism in trophoblast cells[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2018, 14(03): 260-269.

目的

探究过表达滋养细胞中乙酰肝素酶(HPSE)对细胞因子表达的影响,并且初步预测HPSE对滋养细胞作用的潜在分子机制。

方法

选择早孕期人绒毛膜滋养细胞株HTR8/SVneo为研究对象,并构建HPSE过表达稳定转染HTR8/SVneo滋养细胞株,纳入检验组,以及HPSE正常表达稳定转染HTR8/SVneo滋养细胞株,纳入对照组。采用细胞因子抗体芯片半定量检测,对检验组和对照组滋养细胞株中343种细胞因子的变化情况进行检测。应用Image J软件分析和找出差异细胞因子蛋白。采用Western blotting检测2组滋养细胞株中表达水平差异最大的细胞因子AXL受体酪氨酸激酶表达水平,以验证细胞因子抗体芯片半定量检测结果。通过STRING蛋白数据库构建蛋白相互作用关系网络,并应用The Database for Annotation, Visualization and Integrated Discovery (DAVID)在线生物信息学分析软件,进行基因本体(GO)功能富集分析和京都基因与基因组百科全书(KEGG)信号通路分析。

结果

①细胞因子抗体芯片半定量检测结果显示,与对照组滋养细胞株相比,检验组滋养细胞株过表达HPSE后,其细胞因子表达下降,并且检验组与对照组滋养细胞株中细胞因子蛋白表达水平比值<0.666 7的细胞因子,即差异细胞因子共计15种,分别为AXL、细胞间黏附分子(ICAM)1、TEK受体酪氨酸激酶、尿激酶型纤溶酶原激活物受体(PLAUR)、金属蛋白酶组织抑制因子(TIMP)2、基质金属蛋白酶(MMP)9、淋巴细胞激活基因(LAG)3、肿瘤坏死因子受体超家族成员(TNFRSF)1B、TNFRSF1A、细胞毒性和调节性T细胞分子(CRTAM)、TIMP4、人血小板反应蛋白(THBS)1、白细胞介素17受体B(IL17RB)、连接黏附分子样蛋白(AMICA)及C-C类趋化因子16(CCL16)。②Western blotting检测结果显示,检验组滋养细胞株中AXL蛋白表达水平明显低于对照组滋养细胞株,并且差异有统计学意义(t=-6.931,P=0.020),这与细胞因子抗体芯片半定量检测结果一致。③通过STRING蛋白数据库分析结果发现,HPSE可通过血管内皮生长因子(VEGF)A,肿瘤蛋白p53(TP53)和CD44与MMP9产生关联,而MMP9又可直接或者间接与除LAG3、CCL16和IL17RB之外的其他12种差异细胞因子相关联,从而建立相互作用关系网络图。④细胞因子GO功能富集分析结果发现,差异细胞因子主要涉及细胞凋亡负调控和细胞外基质(ECM)分解等41个生物学过程。KEGG信号通路分析结果显示,差异细胞因子主要涉及癌症蛋白多糖信号通路和肿瘤坏死因子信号通路等6条信号通路。

结论

过表达HPSE可调控滋养细胞中细胞因子的表达,可能通过MMP9参与的癌症蛋白多糖信号通路影响滋养细胞的生物学功能。本研究结果可为后续研究HPSE对滋养细胞相关疾病影响,提供研究方向和研究基础。

Objective

To explore the influence of heparanase (HPSE) on the expression of cytokines and predict its underlying molecular mechanism in trophoblast cells.

Methods

The human first-trimester extravillous trophoblast cell line HTR8/SVneo cells were selected as research subjects of this study. And a HPSE over-expression stably transfected HTR8/SVneo cell line and a HPSE normal-expression stably transfected HTR8/SVneo cell line were constructed. They were enrolled into test group and control group, respectively. And then 343 cytokines were semi-quantitatively detected using human cytokine antibody array kit and analyzed by Image J software to discover differential cytokine proteins in trophoblast cell lines of two groups. Western blotting was performed to validate the semi-quantitative results of cytokine antibody array by detecting AXL receptor tyrosine kinase, which had the most significant difference between trophoblast cell lines of two groups. The protein-protein interaction network was constructed through STRING protein online database, and the gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by The Database for Annotation, Visualization and Integrated Discovery (DAVID) online bioinformatics resources.

Results

①The semi-quantitative results of cytokine microarray showed that levels of 15 cytokines, including AXL, intercellular adhesion molecule (ICAM)1, TEK receptor tyrosine kinase, urokinase-type plasminogen activator receptor (PLAUR), tissue inhibitor of metalloproteinase (TIMP)2, matrix metalloprotein (MMP)9, lymphocyte-activation gene (LAG)3, tumor necrosis factor receptor superfamily (TNFRSF)1B, TNFRSF1A, cytotoxic and regulatory T cell molecule (CRTAM), tissue inhibitor of metalloproteinase (TIMP)4, human platelet reactive protein (THBS)1, interleukin 17 receptor B (IL17RB), junctional adhesion molecule-like protein (AMICA), and C-C chemotactic factor 16 (CCL16) were decreased in HPSE-overexpressed trophoblast cell line of test group, compared with the control trophoblast cell line of control group. And the ratio of levels of differential cytokines in trophoblast cell line between test group and control group was less than 0.666 7.②The result of Western blotting showed that the level of AXL in HPSE-overexpressed trophoblast cell line of test group was obviously lower than that in trophoblast cell line of control group, and the difference was statistically significant (t=-6.931, P=0.020), which was consistent with the semi-quantitative results of cytokines microarray. ③HPSE was associated with MMP9 by vascular endothelial growth factor (VEGF)A, tumor protein p53 (TP53) and CD44 by STRING protein online database. And MMP9 was directly or indirectly associated with other 12 types of differential cytokines except LAG3, CCL16 and IL17RB to establish an interaction network. ④GO enrichment analysis of cytokines showed that the differential cytokines were mainly involved in 41 biological processes, including negative regulation of apoptosis and extracellular matrix (ECM) disassembly. Results of KEGG signaling pathway analysis showed that the differential cytokines were mainly involved in 6 signaling pathways, including proteoglycan in cancer signaling pathway and tumor necrosis factor signaling pathway.

Conclusions

Overexpression of HPSE may regulate the expression of cytokines in trophoblast cells. And it may affect the biological functions of trophoblast cells through the proteoglycan in cancer signaling pathway, which MMP9 is involved in. This study can provide a research direction and basis for further study of the influences of HPSE in trophoblast cells associated diseases.

表1 细胞因子蛋白的细胞因子抗体芯片半定量检测结果分析
图1 细胞因子抗体芯片半定量检测结果图
图2 AXL蛋白蛋白质印迹法检测结果(图2A:AXL蛋白蛋白质印迹法检测图;图2B:2组AXL蛋白采用蛋白质印迹法检测的相对表达水平柱状图)
图3 乙酰肝素酶与15种差异细胞因子的相互作用网络图(图3A:HPSE与15种差异细胞因子的直接关系图;图3B:HPSE通过VEGFA、TP53和CD44与15种差异细胞因子的间接关系图)
图4 细胞因子GO功能富集和KEGG信号通路分析结果图(图4A:GO生物学功能分析;图4B:KEGG信号通路分析)
[1]
Le Bouteiller P, Bensussan A. Up-and-down immunity of pregnancy in humans[J]. F1000Res, 2017, 6: 1216.
[2]
Sharma S, Godbole G, Modi D. Decidual control of trophoblast invasion[J]. Am J Reprod Immunol, 2016, 75(3): 341-350.
[3]
Cuffe JSM, Holland O, Salomon C, et al. Review: Placental derived biomarkers of pregnancy disorders[J]. Placenta, 2017, 54: 104-110.
[4]
Wang XH, Liu W, Fan DX, et al. IL33 restricts invasion and adhesion of trophoblast cell line JEG3 by downregulation of integrin α4β1 and CD62L[J]. Mol Med Rep, 2017, 16(4): 3887-3893.
[5]
Pereira de Sousa FL, Chaiwangyen W, Morales-Prieto DM, et al. Involvement of STAT1 in proliferation and invasiveness of trophoblastic cells[J]. Reprod Biol, 2017, 17(3): 218-224.
[6]
Zheng Q, Dai K, Cui X, et al. Leukemia inhibitory factor promote trophoblast invasion via urokinase-type plasminogen activator receptor in preeclampsia[J]. Biomed Pharmacother, 2016, 80: 102-108.
[7]
Ko HS, Park BJ, Choi SK, et al. STAT3 and ERK signaling pathways are implicated in the invasion activity by oncostatin M through induction of matrix metalloproteinases 2 and 9[J]. Yonsei Med J, 2016, 57(3): 761-768.
[8]
Secchi MF, Masola V, Zaza G, et al. Recent data concerning heparanase: focus on fibrosis, inflammation and cancer[J]. Biomol Concepts, 2015, 6(5-6): 415-421.
[9]
Liu XY, Tang QS, Chen HC, et al. Lentiviral miR30-based RNA interference against heparanase suppresses melanoma metastasis with lower liver and lung toxicity[J]. Int J Biol Sci, 2013, 9(6): 564-577.
[10]
Masola V, Zaza G, Secchi MF, et al. Heparanase is a key player in renal fibrosis by regulating TGF-beta expression and activity[J]. Biochim Biophys Acta, 2014, 1843(9): 2122-2128.
[11]
Lv B, Zhang B, Hu XY, et al. Heparanase regulates in vitro VEGF-C expression and its clinical significance to pancreatic ductal cell adenocarcinoma[J]. Oncol Lett, 2016, 11(2): 1327-1334.
[12]
Wang YY, Zhou R, Zhou B, et al. Overexpression of heparanase is associated with preeclampsia by inhibiting invasion of trophocytes[J]. Int J Clin Exp Med, 2015, 8(10): 18107-18114.
[13]
Raphael I, Nalawade S, Eagar TN, et al. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases[J]. Cytokine, 2015, 74(1): 5-17.
[14]
Wedekind L, Belkacemi L. Altered cytokine network in gestational diabetes mellitus affects maternal insulin and placental-fetal development[J]. J Diabetes Complicat, 2016, 30(7): 1393-1400.
[15]
Raghupathy R. Cytokines as key players in the pathophysiology of preeclampsia[J]. Med Princ Pract, 2013, 22 Suppl 1: 8-19.
[16]
Makris A, Xu B, Yu B, et al. Placental deficiency of interleukin-10 (IL-10) in preeclampsia and its relationship to an IL10 promoter polymorphism[J]. Placenta, 2006, 27(4-5): 445-451.
[17]
Song L, Zhong M. Association between interleukin-10 gene polymorphisms and risk of early-onset preeclampsia[J]. Int J Clin Exp Pathol, 2015, 8(9): 11659-11664.
[18]
Tan T, Lu B, Zhang J, et al. Notch1 signaling antagonizes transforming growth factor-beta pathway and induces apoptosis in rabbit trophoblast stem cells[J]. Stem Cells Dev, 2014, 23(8): 813-822.
[19]
Cheng JC, Chang HM, Leung PCK. TGF-β1 inhibits human trophoblast cell invasion by upregulating connective tissue growth factor expression[J]. Endocrinology, 2017, 158(10): 3620-3628.
[20]
Poon IK, Goodall KJ, Phipps S, et al. Mice deficient in heparanase exhibit impaired dendritic cell migration and reduced airway inflammation[J]. Eur J Immunol, 2014, 44(4): 1016-1030.
[21]
Luan Q, Sun J, Li C, et al. Mutual enhancement between heparanase and vascular endothelial growth factor: a novel mechanism for melanoma progression[J]. Cancer Lett, 2011, 308(1): 100-111.
[22]
Caruana I, Savoldo B, Hoyos V, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes[J]. Nat Med, 2015, 21(5): 524-529.
[23]
Pal S, Ganguly KK, Chatterjee A. Extracellular matrix protein fibronectin induces matrix metalloproteinases in human prostate adenocarcinoma cells PC-3[J]. Cell Commun Adhes, 2013, 20(5): 105-114.
[24]
Yang YF, Sun YY, Acott TS, et al. Effects of induction and inhibition of matrix cross-linking on remodeling of the aqueous outflow resistance by ocular trabecular meshwork cells[J]. Sci Rep, 2016, 6: 30505.
[25]
Deng Q, Chen Y, Yin N, et al. N-acetylglucosaminyltransferase V inhibits the invasion of trophoblast cells by attenuating MMP2/9 activity in early human pregnancy[J]. Placenta, 2015, 36(11): 1291-1299.
[26]
Fu Y, Wei J, Dai X, et al. Increased NDRG1 expression attenuate trophoblast invasion through ERK/MMP-9 pathway in preeclampsia[J]. Placenta, 2017, 51: 76-81.
[27]
Duval F, Dos Santos E, Moindjie H, et al. Adiponectin limits differentiation and trophoblast invasion in human endometrial cells[J]. J Mol Endocrinol, 2017, 59(3): 285-297.
[28]
Rahat B, Sharma R, Bagga R, et al. Imbalance between matrix metalloproteinases and their tissue inhibitors in preeclampsia and gestational trophoblastic diseases[J]. Reproduction, 2016, 152(1): 11-22.
[29]
Binder MJ, McCoombe S, Williams ED, et al. The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes[J]. Cancer Lett, 2017, 385: 55-64.
[30]
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: underlying molecular mechanisms[J]. Matrix Biol, 2017, pii: S0945-053X(17)30313-X.
[31]
Hunter KE, Palermo C, Kester JC, et al. Heparanase promotes lymphangiogenesis and tumor invasion in pancreatic neuroendocrine tumors[J]. Oncogene, 2014, 33(14): 1799-1808.
[32]
Chen XP, Luo JS, Tian Y, et al. Downregulation of heparanase expression results in suppression of invasion, migration, and adhesion abilities of hepatocellular carcinoma cells[J]. Biomed Res Int, 2015, 2015: 241983.
[33]
Spyrou A, Kundu S, Haseeb L, et al. Inhibition of heparanase in pediatric brain tumor cells attenuates their proliferation, invasive capacity, and in vivo tumor growth[J]. Mol Cancer Ther, 2017, 16(8): 1705-1716.
[1] 李文金, 薛庆云. 白细胞介素家族炎性细胞因子在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 348-353.
[2] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[3] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[4] 毛永欢, 奚玲, 陆晨, 刘理想, 喻春钊, 沈晓菲. PI3K/Akt信号通路通过Plk1影响胰腺癌细胞PANC-1对吉西他滨的化疗敏感性[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 135-138.
[5] 沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.
[6] 刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.
[7] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[8] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[9] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[10] 宋艳, 魏碧霞, 陶勇, 阿依古孜·克里木, 丁琳. 眼内液检测在明确葡萄膜炎病因中应用的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 82-87.
[11] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[12] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[13] 刘立业, 赵德芳. 非酒精性脂肪肝患者血清细胞因子信号转导抑制因子3、肝X受体α水平与CT影像学特征的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 211-215.
[14] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[15] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
阅读次数
全文


摘要