切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2016, Vol. 12 ›› Issue (05) : 501 -505. doi: 10.3877/cma.j.issn.1673-5250.2016.05.002

所属专题: 经典病例 文献

专家述评

原发性免疫缺陷病的诊疗:一个精准医学的范例
杨锡强1, 赵晓东1,()   
  1. 1. 400014 重庆医科大学附属儿童医院风湿免疫科
  • 收稿日期:2016-07-30 修回日期:2016-08-10 出版日期:2016-10-01
  • 通信作者: 赵晓东

Diagnosis and treatment of primary immunodeficiency diseases: an example of precision medicine

Xiqiang Yang1, Xiaodong Zhao1,()   

  1. 1. Department of Rheumatology and Immunology, Children′s Hospital of Chongqing Medical University, Chongqing 400014, China
  • Received:2016-07-30 Revised:2016-08-10 Published:2016-10-01
  • Corresponding author: Xiaodong Zhao
  • About author:
    Corresponding author: Zhao Xiaodong, Email:
引用本文:

杨锡强, 赵晓东. 原发性免疫缺陷病的诊疗:一个精准医学的范例[J]. 中华妇幼临床医学杂志(电子版), 2016, 12(05): 501-505.

Xiqiang Yang, Xiaodong Zhao. Diagnosis and treatment of primary immunodeficiency diseases: an example of precision medicine[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2016, 12(05): 501-505.

精准医学(precision medicine)是现代医学发展的必然趋势,其基本原理是:发现分子学致病机制-寻找靶向生物学标志物-进行靶向治疗。笔者以原发性免疫缺陷病(PID) X连锁无丙种球蛋白血症(XLA)为例,阐明PID的诊疗过程是精准医学的一个范例。PID是一类异质性疾病,临床表型极为复杂,涉及临床各科。笔者强调临床医师在掌握PID临床表现的基础上,应进一步进行基因和疾病分子机制分析,按照精准医学的原则对其进行诊断和治疗。

Precision medicine is the inevitable trend of modern medical advance. Its basic principle is to find the molecular pathogenesis of the diseases, after then to look for targeted biomarkers in order to make the targeted therapy. In the article, taking X-linked agammaglobulinemia (XLA), one of the primary immunodeficiency diseases (PID) as an example, to illustrate that the diagnosis and treatment process of PID is based on the basic principle of precision medicine. The PID is a kind of heterogeneous diseases with very complex and diversity clinical phenotypes involving various clinical specialists. This article notes that both general and special pediatricians should not only to understand the clinical manifestations of the PID, but also do further genetic analysis and molecular biological mechanism studies. If so, clinical management of PID will be in accordance with the principle of precision medicine.

[1]
SchollI, ZillJM, HärterM,et al. An integrative model of patient-centeredness: a systematic review and concept analysis[J]. PLoS One, 2014, 9(9): e107828.
[2]
CollinsFS, VarmusH. A new initiative on precision medicine[J]. N Engl J Med, 2015, 372(9): 793-795.
[3]
CanonicaGW, BachertC, HellingsP, et al. Allergen immunotherapy (AIT): a prototype of precision medicine[J]. World Allergy Organ J, 2015, 8(1): 31.
[4]
HobinJA, DeschampsAM, BockmanR, et al. Engaging basic scientists in translational research: identifying opportunities, overcoming obstacles[J]. J Transl Med, 2012, 10(1): 72.
[5]
SingCW, CheungCL, WongIC. Pharmacogenomics: how close/far are we to practising individualized medicine for children?[J]. Br J Clin Pharmacol, 2015, 79(3): 419-428.
[6]
McGrathS, GhersiD. Building towards precision medicine: empowering medical professionals for the next revolution[J]. BMC Med Genomics, 2016, 9(1): 23.
[7]
杨锡强. 疾病基因型-表型知识应进入儿科医师的视野[J]. 中华儿科杂志,2013, 51(9): 641-644.
[8]
ChenR, SnyderM. Promise of personalized omics to precision medicine[J]. Wiley Interdiscip Rev SystBiol Med, 2013, 5(1): 73-82.
[9]
HoodL, FloresM. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory[J]. N Biotechnol, 2012, 29(6): 613-624.
[10]
中国制药网. 2016年国家重点研发专项指南发布"精准医学研究"入选[EB/OL]. (2016-03-10)[2016-06-10].

URL    
[11]
赵晓东,杨锡强. 我国儿童免疫学的发展轨迹[J]. 中华儿科杂志,2015, 53(2): 84-86.
[12]
PicardC, Al-HerzW, BousfihaA, et al. Primary immunodeficiency diseases: an update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015[J]. J ClinImmunol, 2015, 35(8): 696-726.
[13]
BrutonOC. Agammaglobulinemia[J]. Pediatrics, 1952, 9(6): 722-728.
[14]
GoodRA. Clinical investigations in patients with agammaglobulinemia[J]. J Lab Clin Med, 1954, 44(5): 803-807.
[15]
FarrarJE, RohrerJ, ConleyME. Neutropenia in X-linked agammaglobulinemia[J]. Clin Immunol Immunopathol,1996, 81(3): 271-276.
[16]
SaffranDC, ParoliniO, FitchHM, et al. Brief report: a point mutation in the SH2 domain of Bruton′s tyrosine kinase in atypical X-linked agammaglobulinemia[J]. N Engl J Med, 1994, 330(21): 1488-1491.
[17]
VetrieD, VořechovskýI, SiderasP, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases[J]. J Immunol, 2012, 188(7): 2948-2955.
[18]
ConleyME, FarmerDM, DobbsAK, et al. A minimally hypomorphic mutation in Btk resulting in reduced B cell numbers but no clinical disease[J]. Clin Exp Immunol, 2008, 152(1): 39-44.
[19]
MarronTU, Martinez-GalloM, YuJE, et al. Toll-like receptor 4-,7-,and 8-activated myeloid cells from patients with X-linked agammaglobulinemia produce enhanced inflammatory cytokines[J]. J Allergy Clin Immunol, 2012, 129(1): 184-190. e1-e4.
[20]
Hernandez-TrujilloVP, ScalchunesC, Cunningham-RundlesC, et al. Autoimmunity and inflammation in X-linked agammaglobulinemia[J]. J Clin Immunol, 2014, 34(6): 627-632.
[21]
RameshM, SimchoniN, HammD, et al. High-throughput sequencing reveals an altered T cell repertoire in X-linked agammaglobulinemia[J]. Clin Immunol, 2015, 161(2): 190-196.
[22]
GasparHB, ConleyME. Immunodeficiency review: early B cell defects[J]. Clin Exp Immunol, 2000, 119(3): 383-389.
[23]
EspanolT, PrevotJ, DrabwellJ, et al. Improving current immunoglobulin therapy for patients with primary immunodeficiency: quality of life and views on treatment[J]. Patient Prefer Adherence, 2014, 8: 621-629.
[24]
KernsHM, RyuBY, StirlingBV, et al. B cell-specific lentiviral gene therapy leads to sustained B-cell functional recovery in a murine model of X-linked agammaglobulinemia[J]. Blood, 2010, 115(11): 2146-2155.
[25]
BestasB, TurunenJJ, BlombergKE, et al. Splice-correction strategies for treatment of X-linked agammaglobulinemia[J]. Curr Allergy Asthma Rep, 2015, 15(3): 510.
[26]
郑缓,吴彤,陆道培,等. 异基因骨髓移植治疗X连锁无丙种球蛋白血症一例[J]. 中华儿科杂志,1991, 29(6): 324-326.
[27]
黄晓军,石红霞,郭乃榄,等. 异基因骨髓移植治疗Bruton病[J]. 中华血液学杂志,2002, 23(10): 528-530.
[28]
IkegameK, ImaiK, YamashitaM, et al. Allogeneic stem cell transplantation for X-linked agammaglobulinemia using reduced intensity conditioning as a model of the reconstitution of humoral immunity[J]. J Hematol Oncol, 2016, 9:9.
[29]
NavabiB, UptonJE. Primary immune deficiencies associated with eosinophilia[J]. Allergy Asthma Clin Immunol, 2016, 12: 27.
[30]
CasanovaJL. Severe infectious diseases of childhood as monogenic inborn errors of immunity[J].Proc Natl Acad Sci USA, 2015, 112(51): E7128-E7137.
[31]
Costa-CarvalhoBT, GrumachAS, FrancoJL, et al. Attending to warning signs ofprimary immune deficiency diseases across the range of clinical practice[J]. J Clin Immunol, 2014, 34(1): 10-22.
[1] 王昭蕊, 裴静. 乳腺组织定位标记夹在乳腺外科中的应用[J]. 中华乳腺病杂志(电子版), 2020, 14(05): 312-316.
[2] 李恒宇, 盛湲. 何谓精准:浅谈乳腺癌基因检测[J]. 中华乳腺病杂志(电子版), 2018, 12(06): 329-334.
[3] 戚丽娜, 郑树. 循环肿瘤细胞及循环肿瘤DNA检测在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2018, 12(03): 187-190.
[4] 陈荟竹, 郭应坤, 汪昕蓉, 宁刚, 陈锡建. 上皮性卵巢癌"二元论模型"的分子生物学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 394-402.
[5] 王璐, 王宇, 曾俊, 陈伟, 江华. 机器学习与多组学结合推动精准营养的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 540-544.
[6] 韩春茂, 王新刚. 谈烧伤学科发展——创新、活力、联动、包容[J]. 中华损伤与修复杂志(电子版), 2018, 13(01): 1-3.
[7] 田亚, 吴美龙, 冯晓彬. 人工智能在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 258-262.
[8] 李玉民, 陈昊, 冯泽东. 原发性肝癌外科治疗[J]. 中华肝脏外科手术学电子杂志, 2021, 10(04): 343-347.
[9] 王锡山. 中美结直肠癌流行病学特征及防诊治策略的对比分析[J]. 中华结直肠疾病电子杂志, 2017, 06(06): 447-453.
[10] 张赛, 徐超, 符锋. 多途径整合在颅脑创伤领域的新观点[J]. 中华神经创伤外科电子杂志, 2019, 05(03): 129-133.
[11] 詹启敏. 健康中国发展背景下的科技创新[J]. 中华神经创伤外科电子杂志, 2018, 04(04): 193-196.
[12] 张璐, 李响, 夏世宏, 童琦, 孙英杰, 马雪丽. 脓毒症休克的诊治在精准医学时代下的发展及临床应用[J]. 中华重症医学电子杂志, 2021, 07(02): 169-173.
[13] 周良辅. 脑膜瘤的精准医学现状[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 193-195.
[14] 胡蓉, 李梅芳, 王磊, 贺艳杰, 李晓丹, 李玉华. 精准诊断在内科学血液肿瘤疾病理论教学中的应用[J]. 中华诊断学电子杂志, 2023, 11(01): 67-69.
[15] 李国仁. 精准医学时代我国食管癌筛查和早期诊断的研究进展[J]. 中华胸部外科电子杂志, 2020, 07(02): 109-115.
阅读次数
全文


摘要