切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2015, Vol. 11 ›› Issue (02) : 265 -268. doi: 10.3877/cma.j.issn.1673-5250.2015.02.026

所属专题: 专题评论 文献

综述

辅助生殖技术中胚胎质量评估方法的研究进展
李楠1, 唐永梅1, 牟联俊1   
  1. 1. 545001 柳州市妇幼保健院生殖健康助孕中心
  • 收稿日期:2014-12-11 修回日期:2015-03-01 出版日期:2015-04-01

Research progress on the assessment methods for pre-implantation embryo development in assisted reproductive technology

Nan Li1, Yongmei Tang1, Lianjun Mu1   

  1. 1. Reproductive Medicine Center, Maternal and Child Health Hospital of Liuzhou City, Liuzhou 545001, Guangxi Zhuang Autonomous Region, China
  • Received:2014-12-11 Revised:2015-03-01 Published:2015-04-01
  • About author:
    Corresponding author: Wei Jihong, Email:
引用本文:

李楠, 唐永梅, 牟联俊. 辅助生殖技术中胚胎质量评估方法的研究进展[J/OL]. 中华妇幼临床医学杂志(电子版), 2015, 11(02): 265-268.

Nan Li, Yongmei Tang, Lianjun Mu. Research progress on the assessment methods for pre-implantation embryo development in assisted reproductive technology[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2015, 11(02): 265-268.

辅助生殖技术中胚胎发育潜能,即胚胎质量的评分将直接影响胚胎移植的选择和辅助生殖的临床结局。胚胎形态学评估方法由于其快速、无创、简单等特点而在临床得到广泛应用。目前,新的胚胎发育潜能评估方法成为研究热点,胚胎形态学评分系统与实时成像分析系统相结合对胚胎发育过程连续观察,便于选择优胚。胚胎代谢组学评估方法,如胚胎培养基中的代谢产物的变化(丙酮酸、葡萄糖、氨基酸等)、胚胎源性细胞因子、培养基或者囊胚腔中的游离DNA等。同时,针对遗传疾病而产生的移植前遗传学筛查法等方法可能为找到更有效地评估胚胎发育潜能标志物奠定基础。笔者拟就对胚胎发育潜能评估方法的研究进展进行综述。

In assisted reproductive technology, embryo viability assessment is directly related to the clinical pregnancy outcome of assisted reproduction. Currently, in the embryo quality evaluation, the most widely used method is morphological evaluation method which is grading the morphological characteristics of gamete and embryo in each period. With the development of assisted reproductive technology, the value of time-lapse imaging analysis system has been recognized. Recently, targeted-metabolic analysis have been proposed as a useful tool for assessment of embryo, involving metabolin of pyruvate acid, glycometabolism, amino acid and so on. Furthermore metabolomics-profiling, also analyzes the embryo derived cytokines, and free DNA. In the meantime, the chromosome screening have been a suitable strategy to select viable embryo for transplantation. This article reviews literatures on the progress of assessment methods for embryo development.

[1]
Petersen CG, Oliveira JB, Mauri AL, et al. Relationship between visualization of meiotic spindle in human oocytes and ICSI outcomes: a meta-analysis[J]. Reprod Biomed Online, 2009, 18(2): 235–243.
[2]
Ebner T, Moser M, Sommergruber M, et al. First polar body morphology and blastocyst formation rate in ICSI patients[J]. Hum Reprod,2002, 17(9): 2415–2418.
[3]
Scott L, Alvero R, Leondires M, et al., The morphology of human pronuclear embryos is positively related to blastocyst development and implantation[J]. Hum Reprod, 2000. 15(11): 2394–403.
Arroyo G, Veiga A, Santaló J, et al. Developmental prognosis for zygotes based on pronuclear pattern: usefulness of pronuclear scoring[J]. J Assist Reprod Genet. 2007, 24(5): 173–181.
[4]
James AN, Hennessy S, Reggio B, et al. The limited importance of pronuclear scoring of human zygotes[J]. Hum Reprod, 2006, 21(6): 1599–1604.
[5]
Wetzels AM, Bastiaans BA, Hendriks JC, et al. The effects of co-culture with human fibroblasts on human embryo development in vitro and implantation[J]. Hum Reprod, 1998, 13(5): 1325–1330.
[6]
Dennis SJ, Thomas MA, Williams DB, et al. Embryo morphology score on day 3 is predictive of implantation and live birth rates[J]. J Assist Reprod Genet, 2006, 23(4): 171–175.
[7]
Demirel LC, Evirgen O, Aydos K, et al. The impact of the source of spermatozoa used for ICSI on pronuclear morphology[J]. Hum Reprod, 2001, 16(11): 2327–2332.
[8]
Scott L. Pronuclear scoring as a predictor of embryo development[J]. Reprod Biomed Online, 2003, 6(2): 201–214.
[9]
Borini A, Lagalla C, Cattoli M, et al. Predictive factors for embryo implantation potential[J]. Reprod Biomed Online, 2005, 10(5): 653–668.
[10]
Guerif F, Le Gouge A, Giraudeau B, et al. Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryos[J]. Hum Reprod, 2007, 22(7): 1973–1981.
[11]
Graham J, Han T, Porter R, et al. Day 3 morphology is a poor predictor of blastocyst quality in extended culture[J]. Fertil Steril, 2000, 74(3): 495–497.
[12]
Gardner DK, Lane M, Stevens J, et al. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril, 2000, 73(6): 1155–1158.
[13]
Papanikolaou EG, D'haeseleer E, Verheyen G, et al. Live birth rate is significantly higher after blastocyst transfer than after cleavage-stage embryo transfer when at least four embryos are available on day 3 of embryo culture. A randomized prospective study[J]. Hum Reprod, 2005, 20(11): 3198–3203.
[14]
Sultana F, Hatori M, Shimozawa N, et al. Continuous observation of rabbit preimplantation embryos in vitro by using a culture device connected to a microscope[J]. J Am Assoc Lab Anim Sci, 2009, 48(1): 52–56.
[15]
Wale PL, Gardner DK. Time-lapse analysis of mouse embryo development in oxygen gradients[J]. Reprod Biomed Online, 2010, 21(3): 402–410.
[16]
Wong CC, Loewke KE, Bossert NL, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage[J]. Nat Biotechnol, 28(10): 1115–1121.
[17]
Pribenszky C, Mátyás S, Kovács P, et al. Pregnancy achieved by transfer of a single blastocyst selected by time-lapse monitoring[J]. Reprod Biomed Online, 2010, 21(4): 533–536.
[18]
Kirkegaard K, Agerholm IE, Ingerslev HJ. Time-lapse monitoring as a tool for clinical embryo assessment[J]. Hum Reprod, 2012, 27(5): 1277–1285.
[19]
Seli E, Botros L, Sakkas D, et al. Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization[J]. Fertil Steril, 2008, 90(6): 2183–2189.
[20]
Houghton FD, Hawkhead JA, Humpherson PG, et al. Non-invasive amino acid turnover predicts human embryo developmental capacity[J]. Hum Reprod, 2002, 17(4): 999–1005.
[21]
Gardner DK, Lane M, Stevens J, et al. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential[J]. Fertil Steril, 2001, 76(6): 1175–1180.
[22]
Haggarty P, Wood M, Ferguson E, et al. Fatty acid metabolism in human preimplantation embryos[J]. Hum Reprod, 2006, 21(3): 766–773.
[23]
Turner K, Martin KL, Woodward BJ, et al. Comparison of pyruvate uptake by embryos derived from conception and non-conception natural cycles[J]. Hum Reprod, 1994, 9(12): 2362–2366.
[24]
Fuzzi B, Rizzo R, Criscuoli L, et al. HLA-G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy[J]. Eur J Immunol, 2002, 32(2): 311–315.
[25]
Brison DR, Houghton FD, Falconer D, et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover[J]. Hum Reprod, 2004, 19(10): 2319–2324.
[26]
Sageshima N, Shobu T, Awai K, et al.Soluble HLA-G is absent from human embryo cultures: a reassessment of sHLA-G detection methods[J]. J Reprod Immunol, 2007. 75(1): 11–22.
Roudebush WE, Wininger JD, Jones AE, et al. Embryonic platelet-activating factor: an indicator of embryo viability[J]. Hum Reprod, 2002, 17(5): 1306–1310.
[27]
Singh R, Sinclair KD. Metabolomics: approaches to assessing oocyte and embryo quality[J]. Theriogenology, 2007, 68(Suppl 1): S56–S62.
[28]
Seli E, Robert C, Sirard MA. OMICS in assisted reproduction: possibilities and pitfalls[J]. Mol Hum Reprod, 2010, 16(8): 513–530.
[29]
Schoolcraft WB, Katz-Jaffe MG, Stevens J, et al. Preimplantation aneuploidy testing for infertile patients of advanced maternal age: a randomized prospective trial[J]. Fertil Steril, 2009, 92(1): 157–162.
[30]
Munné S, Chen S, Fischer J, et al. Preimplantation genetic diagnosis reduces pregnancy loss in women aged 35 years and older with a history of recurrent miscarriages[J]. Fertil Steril, 2005, 84(2): 331–335.
[31]
Cremer T, Landegent J, Brückner A, et al. Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84[J]. Hum Genet, 1986, 74(4): 346–352.
[32]
Colls P, Goodall N, Zheng X, et al. Increased efficiency of preimplantation genetic diagnosis for aneuploidy by testing 12 chromosomes[J]. Reprod Biomed Online, 2009, 19(4): 532–538.
[33]
Zamora S, Clavero A, Gonzalvo MC, et al. PGS-FISH in reproductive medicine and perspective directions for improvement: a systematic review[J]. J Assist Reprod Genet, 2011, 28(8): 747–757.
[34]
Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors[J]. Science, 1992, 258(5083): 818–821.
[35]
Wilton L, Williamson R, McBain J, et al. Birth of a healthy infant after preimplantation confirmation of euploidy by comparative genomic hybridization[J]. N Engl J Med, 2001, 345(21): 1537–1541.
[36]
Handyside AH, Harton GL, Mariani B, et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes[J]. J Med Genet, 2010, 47(10): 651–658.
[37]
Harper JC, Harton G. The use of arrays in preimplantation genetic diagnosis and screening[J]. Fertil Steril, 2010, 94(4): 1173–1177.
[38]
Treff NR, Northrop LE, Kasabwala K, et al. Single nucleotide polymorphism microarray-based concurrent screening of 24-chromosome aneuploidy and unbalanced translocations in preimplantation human embryos[J]. Fertil Steril, 2011, 95(5): 1606–1612.e1-e2.
[39]
Treff NR, Su J, Tao X, et al. Accurate single cell 24 chromosome aneuploidy screening using whole genome amplification and single nucleotide polymorphism microarrays[J]. Fertil Steril, 2010, 94(6): 2017–2021.
[40]
Harper J, Coonen E, De Rycke M, et al. What next for preimplantation genetic screening (PGS)? a position statement from the ESHRE PGD Consortium Steering Committee[J]. Hum Reprod, 2010, 25(4): 821–823.
[41]
Martín J, Cervero A, Mir P, et al. The impact of next-generation sequencing technology on preimplantation genetic diagnosis and screening[J]. Fertil Steril, 2013, 99(4): 1054–1061.e3.
[42]
Yin X, Tan K, Vajta G, et al. Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts[J]. Biol Reprod, 2013, 88(3): 69.
[1] 高青卓, 康宜凡, 王治鸿. 体外受精周期中单原核胚胎的临床研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 260-265.
[2] 杨琳, 尹如铁. 外阴白色病变病因研究及治疗现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 157-165.
[3] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[4] 薛庆, 施赛叶, 徐雅文, 盛夏, 张芹芹. 追踪方法学联合失效模式与效应分析在膀胱灌注化疗患者中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 553-559.
[5] 嵇振岭, 陈杰, 唐健雄. 重视复杂腹壁疝手术并发症的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 601-606.
[6] 吉莉, 苏云楠, 王斌, 沈滔, 刘团结, 毛蕾, 徐玉萍, 张婷, 王博. 急性缺血性脑卒中患者脑白质微结构改变对长期认知功能损伤的预测价值研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 193-200.
[7] 洪凡, 陈敦金, 傅洋, 梁新月, 吴毅, 王晓怡. 体外受精-胚胎移植妊娠合并前置胎盘临床研究[J/OL]. 中华产科急救电子杂志, 2024, 13(03): 176-182.
[8] 粟睿, 周璇, 杨殊琳, 方晨韵, 陈素华, 邓东锐, 曾万江, 刘海意, 龚洵, 吴媛媛, 刘燕燕, 肖娟, 余俊, 何梦舟, 李淑芳, 王子琢, 林星光, 乌剑利, 王少帅, 岳静, 靳镭, 冯玲, 丁文成. 经辅助生殖技术妊娠患者早产的影响因素分析[J/OL]. 中华产科急救电子杂志, 2024, 13(03): 168-175.
[9] 卫星, 孙路明. 辅助生殖技术与胎儿生长障碍[J/OL]. 中华产科急救电子杂志, 2024, 13(02): 88-92.
[10] 胡采宏, 张卫社. 辅助生殖技术与早期流产[J/OL]. 中华产科急救电子杂志, 2024, 13(02): 69-72.
[11] 李任远, 梁桂宁, 于馨洋, 张莹. 基因检测及胚胎植入前单基因遗传学检测在优生优育中的作用[J/OL]. 中华产科急救电子杂志, 2024, 13(02): 117-120.
[12] 郭义, 陈泽林, 赵雪, 杨毅, 徐泽成. 中医针灸标准化基本理论和方法的探索与实践[J/OL]. 中华针灸电子杂志, 2024, 13(04): 133-139.
[13] 沈袁恒. 医学检验实验室自建检测方法的现状分析与管理展望[J/OL]. 中华临床实验室管理电子杂志, 2023, 11(04): 200-206.
[14] 欧阳川, 朱巧珍, 欧阳林. 腰椎间盘退变的生物代谢特征及评价技术研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 206-211.
[15] 崔磊, 徐东升. 减重手术治疗肥胖患者胰岛素抵抗的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 127-132.
阅读次数
全文


摘要