切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2014, Vol. 10 ›› Issue (04) : 538 -541. doi: 10.3877/cma.j.issn.1673-5250.2014.04.031

所属专题: 文献

综述

乙酰肝素酶与相关疾病的研究进展
罗东1, 周容2   
  1. 1. 610041 成都,四川大学华西第二医院麻醉科
    2. 610041 成都,四川大学华西第二医院妇产科
    3. 610041 成都,四川大学华西第二医院分子转化实验室
  • 收稿日期:2014-05-20 修回日期:2014-07-08 出版日期:2014-08-01

Research Progress of Heparanase and Related Diseases

Dong Luo1, Rong Zhou2   

  1. 1. Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2014-05-20 Revised:2014-07-08 Published:2014-08-01
  • About author:
    (Corresponding author: Wang Yanyun, Email: )
引用本文:

罗东, 周容. 乙酰肝素酶与相关疾病的研究进展[J/OL]. 中华妇幼临床医学杂志(电子版), 2014, 10(04): 538-541.

Dong Luo, Rong Zhou. Research Progress of Heparanase and Related Diseases[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2014, 10(04): 538-541.

乙酰肝素酶(HPA)是人体内唯一能降解硫酸肝素蛋白多糖(HSPG)的一种β-D-葡萄糖醛酸内切酶。HSPG是细胞外基质(ECM)的重要组成部分,广泛分布于细胞表面,在正常组织的发育与病理学改变的发展中具有重要作用。HPA能识别HSPG的硫酸肝素链(HS)并将其降解,进而影响ECM与上皮细胞及内皮细胞基底膜结构,释放与HSPG结合的各种细胞因子。除通过降解HS产生间接生理作用外,HPA还以聚集、脱落、分裂素绑定的方式影响多配体聚糖的生物效应。另外,HPA可以增强信号级联效应,促进蛋白激酶的磷酸化和基因转录。因此,HPA的激活会引起一些病理生理学改变,包括炎性反应、血管形成、肿瘤转移、胚胎植入等。笔者拟就HPA与相关疾病的研究进展,进行综述如下。

The heparanase (HPA), a β-D-glucuronidase enzyme, is an unique enzyme of the human body to degrade heparan sulfate proteoglycan (HSPG). HSPG, an important part of extracellular matrix (ECM) and widely distributed on the cell surface, plays an important role in the process of growth and development of normal and pathological tissues. HPA can identify heparan sulfate (HS) chains of HSPG and degrade them, thereby affects the ECM and basement membrane of epithelial cells and endothelial cells. So various cytokines binded with HSPG are released. In addition to the indirect physiological effects through degrading HS, HPA also can affect the biological effects of syndecan by aggregating, shedding, binding mitogens ligands. Furthermore, HPA can enhance the signal-cascading effect, promote the phosphorylation of the protein kinase and gene transcription. Therefore, the activation of HPA will cause some of the pathophysiological changes, including inflammation, angiogenesis, tumor metastasis, embryo implantation. This article reviews the progress of HPA and related diseases.

1
Li YJ, Li SL. Muscular characteristic of heparanase and its function in physiological and pathological process [J]. J Henan Univ:Med Sci, 2008, 27(3):14-19.
2
Baraz L, Haupt Y, Elkin M, et al. Tumor suppressor p53 regulates heparanase gene expression [J]. Oncogene, 2006, 25(28):3939-3947.
3
de Mestre AM, Rao S, Hornby JR, et al. Early growth response gene 1 (EGR1) regulates heparanase gene transcription in tumor cell[J]. J Biol Chem, 2005, 280(42):35136-35147.
4
Elkin M, Cohen I, Zcharia E, et al. Regulation of heparanase gene expression by estrogen in breast cancer [J]. Cancer Res, 2003, 63(24):8821-8826.
5
Chen G, Wang D, Vikramadithyan R, et al. Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression[J]. Biochemistry, 2004, 43(17):4971-4977.
6
Hoogewerf AJ, Leone JW, Reardon IM, et al. CXC chemokines connective tissue activating peptide-Ⅲ and neutrophil activating peptide-2 are heparin/heparan sulfate-degrading enzymes [J]. J Biol Chem, 1995, 270(7):3268-3277.
7
Dempsey LA, Plummer TB, Coombes SL, et al. Heparanase expression in invasive trophoblasts and acute vascular damage[J]. Glycobiology, 2000, 10(5):467-475.
8
Lerner I, Hermano E, Zcharia E, et al. Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice [J]. J Clin Invest, 2011, 121(5):1709-1721.
9
Zhang X, Wang B, Q'Callaghan P, et al. Heparanase overexpression impairs inflammatory response and macrophage-mediated clearance of amyloid-β in murine brain [J]. Acta Neuropathol, 2012, 124(4):465-478.
10
Waterman M, Ben-Izhak O, Eliakim R, et al. Heparanase upregulation by colonic epithelium in inflammatory bowel disease [J]. Mod Pathol, 2007, 20(4):8-14.
11
Schmidt EP, Yang Y, Janssen WJ, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis [J]. Nat Med, 2012, 18(8):1217-1223.
12
Carmeliet P. Angiogenesis in life, disease and medicine [J]. Nature, 2005, 438(7070):932-936.
13
Drake CJ. Embryonic and adult vasculogenesis[J]. Birth Defects Res C Embryo Today, 2003, 69(1):73-82.
14
Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele [J]. Nature, 1996, 380(6573):435-439.
15
Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease[J]. Nat Med, 1995, 1(1):27-31.
16
Escobar Galvis ML, Jia J, Zhang X, et al. Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate[J]. Nat Chem Biol, 2007, 3(12):773-778.
17
Purushothaman A, Uyama T, Kobayashi F, et al. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis [J]. Blood, 2010, 115(12):2449-2457.
18
Jiang G, Zheng L, Pu J, et al. Small RNAs targeting transcription start site induce heparanase silencing through interference with transcription initiation in human cancer cells[J]. PLoS One, 2012, 7(2):e31379.
19
Joyce JA, Freeman C, Meyer-Morse N, et al. A functional heparan sulfate mimetic implicates both heparanase and heparin sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer[J]. Oncogene, 2005, 24(25):4037-4051.
20
Yang Y, Macleod V, Miao HQ, et al. Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis[J]. J Biol Chem, 2007, 282(18):13326-13333.
21
Ilan N, Elkin M, Vlodavsky I. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis [J]. Int J Biochem Cell Biol, 2006, 38(12):2018-2039.
22
Johnstone KD, Karoli T, Liu L, et al. Synthesis and biological evaluation of polysulfated oligosaccharide glycosides as inhibitors of angiogenesis and tumor growth[J]. J Med Chem, 2010, 53(4):1686-1699.
23
Gaide Chevronnay HP, Selvais C, Emonard H, et al. Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration[J]. Biochim Biophys Acta, 2012, 1824(1):146-156.
24
Kirn-Safran C, DSouza S, Carson D. Heparan sulfate proteoglycans and their binding proteins in embryo implantation and placentation[J]. Semin Cell Dev Biol, 2008, 19(2):187-193.
25
Dempsey LA, Plummer TB, Coombes SL, et al. Heparanase expression in invasive trophoblasts and acute vascular damage[J]. Glycobiology, 2000, 10(5):467-475.
26
Kizaki K, Yamada O, Nakano H, et al. Cloning and localization of heparanase in bovine placenta[J]. Placenta, 2003, 24(4):424-430.
27
Xu X, Ding J, Rao G, et al. Estradiol induces heparanase-1 expression and heparan sulphate proteoglycan degradation in human endometrium[J]. Hum Reprod, 2007, 22(4):927-937.
28
Harris LK, Baker PN, Brenchley PE, et al. Trophoblast-derived heparanase is not required for invasion[J]. Placenta, 2008, 29(4):332-337.
29
Wirstlein PK, Mikolajczyk M, Skrzypczak J. Correlation of the expression of heparanase and heparin-binding EGF-like growth factor in the implantation window of nonconceptual cycle endometrium[J]. Folia Histochem Cytobiol, 2013, 51(2):127-134.
30
Revel A, Helman A, Koler M, et al. Heparanase improves mouse embryo implantation[J]. Fertil Steril, 2005, 83(3):580-586.
31
D'Souza SS, Daikoku T, Farach-Carson MC, et al. Heparanase expression and function during early pregnancy in mice[J]. Biol Reprod, 2007, 77(3):433-441.
32
Nadir Y, Henig I, Naroditzky I, et al. Involvement of heparanase in early pregnancy losses[J]. Thromb Res, 2010, 125(5):251-257.
33
Nadir Y, Brenner B. Heparanase procoagulant activity [J]. Thromb Res, 2012, 129(Suppl l):S76-79.
34
Teng YC, Lin QD, Lin JH, et al. Coagulation and fibrinolysis related cytokine imbalance in preeclampsia: the role of placental trophoblasts[J]. J Perinat Med, 2009, 37(4):343-348.
35
Sela S, Natanson-Yaron S, Zcharia E, et al. Local retention versus systemic release of soluble VEGF receptor-1 are mediated by heparin-binding and regulated by heparanase [J]. Circ Res, 2011, 108(9):1063-1070.
36
Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia[J]. N Engl J Med, 2004, 350(7):672-683.
[1] 张俊慧, 徐莉, 吕青, 谭秋雯. 肿瘤细胞外基质对乳腺癌侵袭转移的调控[J/OL]. 中华乳腺病杂志(电子版), 2022, 16(04): 236-239.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J/OL]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[4] 盛志强, 袁嫣然. ATP1A3基因突变相关疾病1个家系报道及文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 331-338.
[5] 初磊, 郭翼, 童晓文. Periostin在妇科恶性肿瘤中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 145-149.
[6] 王一淼, 何培杰. 成纤维细胞在增生性瘢痕形成中的作用及调控因素[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(01): 78-85.
[7] 寇佳慧, 张梦圆, 张宝林. 生物组织工程中细胞外基质成分促进创面愈合的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(05): 449-452.
[8] 刘欢, 邢皓, 常正奇, 张记. 机械敏感性离子通道蛋白Piezo1在感染相关疾病中的研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 263-269.
[9] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[10] 邱佳辉, 韩超, 黄陈. 胶原蛋白在结直肠癌中的研究现状与进展[J/OL]. 中华结直肠疾病电子杂志, 2022, 11(04): 281-287.
[11] 文华伟, 汤明, 方禹舜, 李亚楠, 张绍华, 张青松. 生物材料增强肩袖腱骨愈合的研究进展[J/OL]. 中华肩肘外科电子杂志, 2023, 11(03): 273-278.
[12] 崔骞文, 汪燕兰, 李晴, 赵平月, 徐一菲, 袁知东, 韩巍, 张笑薇, 黄磊, 樊尚荣. IgG4相关甲状腺疾病合并妊娠一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(01): 33-40.
[13] 吕斌, 胡良聪, 谢旭东, 程鹏, 米博斌, 刘国辉. 褪黑素调控椎间盘退变的研究进展[J/OL]. 中华老年病研究电子杂志, 2022, 09(04): 58-64.
[14] 郭燕. 肠道及其菌群老化与老化相关疾病[J/OL]. 中华老年病研究电子杂志, 2021, 08(03): 13-19.
[15] 刘扬, 张锐毅, 张艳, 李红敏, 苏秋羊, 薛孟周. 细胞外基质金属蛋白酶诱导因子在脑卒中中的作用[J/OL]. 中华脑血管病杂志(电子版), 2022, 16(01): 57-60.
阅读次数
全文


摘要