切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2011, Vol. 07 ›› Issue (01) : 66 -69. doi: 10.3877/cma.j.issn.1673-5250.2011.01.019

综述

树突状细胞在呼吸道合胞病毒免疫逃逸中的作用研究进展
翟松会   
  1. 610041 四川成都,四川大学华西第二医院儿科
  • 出版日期:2011-02-01

Research Progress of Relationship Between Dendritic Cell and Respiratory Syncytial Virus Immune Escape

Song-hui ZHAI   

  1. West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Published:2011-02-01
引用本文:

翟松会. 树突状细胞在呼吸道合胞病毒免疫逃逸中的作用研究进展[J]. 中华妇幼临床医学杂志(电子版), 2011, 07(01): 66-69.

Song-hui ZHAI. Research Progress of Relationship Between Dendritic Cell and Respiratory Syncytial Virus Immune Escape[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2011, 07(01): 66-69.

树突状细胞(dendritic cell, DC)作为专职抗原递呈细胞(antigen presenting cell, APC),表面表达多种受体分子,如C型凝集素受体(C-type lectin receptor, CLR)、Toll样受体(Toll-like receptor, TLR)及吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase, IDO)等,在免疫逃逸和免疫耐受中发挥重要作用。本文就树突状细胞表面表达受体分子在呼吸道合胞病毒(respiratory syncytial virus, RSV)免疫逃逸中作用,综述如下。

Dendritic cell (DC) is professional antigen presenting cell (APC), which plays important role in immune escape and immune tolerance. There are many adaptor molecules in dendritic cell surface, such as C-type lectin receptors, Toll-like receptor, indoleamine 2, 3-dioxygenase, etc. This article reviews the relationship between dendritic cell and respiratory syncytial virus (RSV) immune escape.

1 Larranaga CL, Ampuero SL, Luchsinger VF. Impaired immune response in severe human lower tract respiratory infection by respiratory syncytial virus[J]. Pediatr Infect Dis, 2009, 28(10): 1-7.
2 Liu XM, Wang Z, Guo YN. Respiratory syncytial virus nephropathy in rats[J]. Kidney Int, 2007, 71(5): 388-396.
3 Wu J, Wang Z, Wang D. Respiratory virus expression in renal tissues and urine of children with steroid responsive simple nephrotic syndrome[J]. J Sichuan Univ (Med Sci Ed), 2007, 38(6): 969-972.
4 Shyam S, Mohapatra, Richard F, et al. Respiratory syncytial virus infection: From biology to therapy: A perspective [J]. World Allergy Organ J, 2008, 1(2): 21-28.
5 Brown G, Jeffree CE, McDonald T, et al. Analysis of the interaction between respiratory syncytial virus and lipid-rafts in Hep2 cells during infection[J]. Virology, 2004, 327(2): 175-185.
6 Brown G, Rixon HW, Sugrue RJ. Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1[J]. J Gen Virol, 2002, 83(Pt8): 1841-1850.
7 Bourgeois C, Bour JB, Lidholt K, et al. Heparin-like structures on respiratory syncytial virus are involved in its infectivity in vitro[J]. J Virol, 1998, 72(9): 7221-7227.
8 Malhotra R, Ward M, Bright H, et al. Isolation and characterisation of potential respiratory syncytial virus receptor(s) on epithelial cells[J]. Microb Infect, 2003, 5(2): 123-133.
9 Kurt-Jones EA, Popova L, Kwinn L, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus[J]. Nat Immunol 2000, 1(5): 398-401.
10 Behera AK, Matsuse H, Kumar M, et al. Blocking intercellular adhesion molecule-1 on human epithelial cells decreases respiratory syncytial virus infection[J]. Biochem Biophys Res Commun, 2001, 280(1): 188-195.
11 Marty A, Meanger J, Mills J, et al. Association of matrix protein of respiratory syncytial virus with the host cell membrane of infected cells[J]. Arch Virol, 2004, 149(1): 199-210.
12 Rodriguez L, Cuesta I, Asenjo A, et al. Human respiratory syncytial virus matrix protein is an RNA-binding protein: Binding properties, location and identity of the RNA contact residues[J]. J Gen Virol, 2004, 85(Pt3): 709-719.
13 Spann KM, Tran KC, Chi B, et al. Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages[J]. J Virol, 2004, 78(8): 4363-4369.
14 Deplanche M, Lemaire M, Mirandette C, et al. In vivo evidence for quasispecies distributions in the bovine respiratory syncytial virus genome[J]. J Gen Vir, 2007, 88(Pt4): 1260-1265.
15 Bem RA, Bos AP, Bots M, et al. Activation of the granzyme pathway in children with severe respiratory syncytial virus infection[J]. Pediatr Res, 2008, 63(6): 650-655.
16 Sonja IG, Jeroen den Dunnen, Manja L, et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk[J]. Nature Immunol, 2009, 10(2): 203-213.
17 Friederike MW, Alessandra C, Ben J, et al. DCIR is endocytosed into human dendritic cells and inhibits TLR8-mediated cytokine production[J]. J Leukoc Biol, 2009, 85(3): 518-525.
18 Geijtenbeek TB, Van Vliet SJ, Koppel EA. Mycobacteria target DC-SIGN to suppress dendritic cell function[J]. J Exp Med, 2003, 197(1): 7-17.
19 Hodges A, Sharrocks K. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication[J]. Nature Immunol, 2007, 8(6): 569-577.
20 Sonja IG, Jeroen den Dunnen, Manja L, et al. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori[J]. Nature immunol, 2009, 10(10): 1081-1088.
21 Barton GM, Kaqan JC. A cell biological view of Toll-like receptor function: Regulation through compartmentalization[J]. Nature Rev Immunol, 2009, 9(8): 535-542.
22 Shirali AC, Goldstein DR. Tracking the Toll of kidney disease[J]. J Am Soc Nephrol, 2008, 19(8): 1444-1450.
23 Vercammen E, Staal J, Beyaert R. Sensing of viral infection and activation of innate immunity by Toll-like receptor 3 [J]. Clin Microbiol Rev, 2008, 21(1): 13-25.
24 Agnes AA, Prasad R, Toni IP, et al. Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high risk infants and young children[J]. J Immunol, 2007, 179(5): 3171-3177.
25 Ciferska H, Horak P, Konttinen YT, et al. Expression of nucleic acid binding Toll-like receptors in control, lupus and transp lanted kidneys-a preliminary pilot study [J]. Lupus, 2008, 17(6): 580-585.
26 Puccetti P, Grohmann U. IDO and regulatory T cells: A role for reverse signalling and non-canonical NF-kappaB activation[J]. Nature Rev Immunol, 2007, 7(10): 817-823.
27 Munn DH, Sharma MD, Mellor AL, et al. Ligation of B7-1/B7-2 by human CD4 T cells triggers indoleamine 2, 3-dioxygenase activity in dendritic cells[J]. J Immunol, 2004, 172(7): 4100-4110.
28 Mellor AL, Chandler P, Baban B, et al. Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA-4 mediated induction of indoleamine 2, 3 dioxygenase[J]. Int Immunol, 2004, 16(10): 1391-1401.
29 Hou W, Li S, Wu Y, et al. Inhibition of indoleamine 2, 3-dioxygenase-mediated tryptophan catabolism accelerates crescentic glomerulonephritis[J]. Clin Exp Immunol, 2009, 156(2): 363-372.
30 González PA, Prado CE, Leiva ED, et al. Respiratory syncytial virus impairs T cell activation by preventing synapse assembly with dendritic cells[J]. Proc Natl Acad Sci U S A, 2008, 105(39): 14999-50004.
31 Munir S, Le Nouen C, Luongo C, et al. Nonstructural proteins 1 and 2 of respiratory syncytial virus suppress maturation of human dendritic cells[J]. J Virol, 2008, 82(17): 8780-8796.
32 Rothoeft T, Fischer K, Zawatzki S, et al. Differential response of human naive and memory/effector T cells to dendritic cells infected by respiratory syncytial virus[J]. Clin Exp Immunol, 2007, 150(2): 263-273.
[1] 赵雨菲, 刘瀚旻. 儿童常见病原体所致社区获得性肺炎胸部X射线摄片影像学表现[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(01): 7-14.
[2] 赖青, 王峥. 呼吸道合胞病毒感染导致大鼠肾病病理模型持续感染证据研究[J]. 中华妇幼临床医学杂志(电子版), 2016, 12(02): 132-140.
[3] 陈艳, 侍效春, 刘晓清. 巨细胞病毒免疫逃逸机制研究进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 73-78.
[4] 尤娜, 褚萨萨, 朱进, 张馨, 杨志国, 汪茂荣. 生物活性透明质酸对脂多糖诱导的人树突状细胞和巨噬细胞炎症应答作用[J]. 中华实验和临床感染病杂志(电子版), 2017, 11(01): 14-19.
[5] 肖倩, 张丹丹, 张婷, 贺婵娟, 张伟芳, 吴登旬, 刘英. 树突状细胞在口腔扁平苔藓发病机制中的作用[J]. 中华口腔医学研究杂志(电子版), 2022, 16(04): 229-233.
[6] 岳佩瑜, 徐罕鲤, 陈双燕. AECOPD感染呼吸道合胞病毒对炎症反应及预后的意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 94-96.
[7] 陈晓霞, 陈敏, 穆德广. DC-SIGN在肿瘤免疫中的研究进展[J]. 中华肺部疾病杂志(电子版), 2017, 10(05): 594-596.
[8] 谢林岑, 陈月秋, 沈振亚. 高表达microRNA-155的骨髓间充质干细胞对免疫调节的影响[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(02): 88-94.
[9] 江均良, 何净明, 黄泽坚, 刘开睿, 张磊. 肝滤泡树突状细胞肉瘤一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2016, 05(04): 254-259.
[10] 张先舟, 聂常富, 韩风, 周进学, 邱大鹏, 李庆军, 蒙博, 白睿华, 王涛, 庞春, 庄浩. 肝滤泡树突状细胞肉瘤一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2015, 04(02): 109-112.
[11] 赵梓妍, 丁怡, 马建民. 雌激素缺乏对泪腺组织影响的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(04): 252-256.
[12] 邓圆圆, 范益民. Tim-3在肿瘤免疫中的研究进展[J]. 中华神经创伤外科电子杂志, 2016, 02(02): 112-115.
[13] 龚畅, 林群, 宋尔卫. 肿瘤免疫治疗机制及乳腺癌免疫治疗进展[J]. 中华临床医师杂志(电子版), 2020, 14(11): 857-861.
[14] 郑善翠, 王楷文, 刘磊, 邓志勇, 陈芳, 孙学明, 曹君君, 唐佳. 浆细胞样树突状细胞及T淋巴细胞相关细胞因子在原发性干燥综合征患者唇腺组织中的检测与临床意义[J]. 中华临床医师杂志(电子版), 2019, 13(06): 444-448.
[15] 廖雨琴, 许青, 祝宇翀, 单宇, 杨阳, 刘军权, 黄丹婷, 孙香香. 三叶青提取物对人树突状细胞功能的影响[J]. 中华临床实验室管理电子杂志, 2019, 07(03): 150-155.
阅读次数
全文


摘要