切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2016, Vol. 12 ›› Issue (02) : 132 -140. doi: 10.3877/cma.j.issn.1673-5250.2016.02.002

所属专题: 文献

论著

呼吸道合胞病毒感染导致大鼠肾病病理模型持续感染证据研究
赖青1, 王峥1,*,*()   
  1. 1. 610041 成都,四川大学华西第二医院儿科
  • 收稿日期:2015-09-30 修回日期:2016-03-02 出版日期:2016-04-01
  • 通信作者: 王峥

Research of evidence of persistent infection of respiratory syncytial virus in pathological models of respiratory syncytial virus-induced nephropathy rats

Qing Lai1, Zheng Wang1()   

  1. 1. Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2015-09-30 Revised:2016-03-02 Published:2016-04-01
  • Corresponding author: Zheng Wang
  • About author:
    Corresponding author: Wang Zheng, Email:
引用本文:

赖青, 王峥. 呼吸道合胞病毒感染导致大鼠肾病病理模型持续感染证据研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2016, 12(02): 132-140.

Qing Lai, Zheng Wang. Research of evidence of persistent infection of respiratory syncytial virus in pathological models of respiratory syncytial virus-induced nephropathy rats[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2016, 12(02): 132-140.

目的

探讨呼吸道合胞病毒(RSV)感染SD大鼠的肾病病理模型中,RSV持续感染证据。

方法

选取2个月龄、体重为180~200 g的清洁级雄性SD大鼠62只为研究对象。采用随机数字表法将其随机分为RSV组(n=35)与对照组(n=27)。①对RSV组SD大鼠,采用毒力疱斑形成单位(PFU)为6×106 RSV液(0.4 mL/d腹腔注射+0.2 mL/d鼻腔滴注)×3 d处理,建立RSV感染SD大鼠肾病病理模型。对照组采用磷酸盐缓冲液(PBS)(0.4 mL/d腹腔注射+ 0.2 mL/d鼻腔滴注)×3 d处理,建立对照组PBS模型。两组均以造模前1 d计算为第0天,造模结束时计算为造模成功第1天。通过电子显微镜观察RSV感染SD大鼠肾病病理模型造模结束后第7与60天的肾小球超微结构改变,判断SD大鼠肾病病理模型造模是否成功。②RSV组SD大鼠肾病病理模型造模成功后,将35只SD大鼠平均分为7个亚组(RSV 0、7、15、30、60、90及120 d亚组),每个亚组均为5只SD大鼠;将对照组27只PBS模型SD大鼠,按照上述时间点分为7个亚组(PBS 0、7、15、30、60、90及120 d亚组),每个亚组分别为5、5、5、3、3、3、3只SD大鼠。分别测定各个RSV亚组与PBS亚组SD大鼠的24 h尿蛋白定量、血清白蛋白及血清肌酐水平等指标,并进行统计学分析。③于上述指标测定完毕后,分别于上述时间点处死RSV亚组与PBS亚组SD大鼠。同时,切除SD大鼠左肾下2/3、左肺下2/3和脾下2/3,以4%多聚甲醛固定24 h后,石蜡包埋后切片,采用苏木精-伊红(HE)染色,光镜下观察各个亚组SD大鼠肾、肺、脾组织是否发生病理学形态结构改变。④以RSV G蛋白单克隆抗体为一抗,制作RSV组SD大鼠肾、肺、脾组织免疫组化检测标本,于光镜下寻找各个RSV亚组RSV G蛋白存在证据。⑤以RSV G蛋白单克隆抗体为一抗,采用与绿色荧光试剂结合,同时采用4',6-二脒基-2-苯基吲哚(DAPI)染料蓝染细胞核,制作各个RSV亚组SD大鼠肾组织荧光免疫检测标本,于荧光显微镜下寻找RSV G蛋白存在证据及其与细胞核关系。⑥切除剩余RSV亚组左肾上1/3,以3%戊二醛固定后,送至四川大学华西医院病理科制作电子显微镜标本,于电子显微镜下观察各个RSV亚组SD大鼠肾小球超微结构是否发生病理改变,同时寻找RSV颗粒。

结果

①RSV组SD大鼠肾病病理模型造模成功,对照组PBS模型亦造模成功。②各个RSV亚组与PBS亚组SD大鼠的24 h尿蛋白定量水平检测结果显示,RSV 0与90 d亚组分别与相同时间点PBS亚组比较,差异均无统计学意义(P>0.05);而RSV 7、15、30、60及120 d亚组,却分别较相同时间点PBS亚组均显著升高,并且差异均有统计学意义(t=6.9、3.1、3.9、2.2、5.6,P<0.05)。血清白蛋白及血清肌酐水平检测结果显示,7个RSV亚组分别与相同时间点的7个PBS亚组比较,差异均无统计学意义(P>0.05)。③于光镜下观察各个RSV亚组SD大鼠的肾、肺、脾组织形态结构(HE染色)结果显示,除RSV 0 d亚组外,其余各个亚组肾、肺、脾组织形态结构均出现不同程度病理改变。④于光镜下观察各个RSV亚组SD大鼠的肾、肺、脾组织免疫组化技术检测结果显示,除RSV 0 d亚组外,其余各个RSV亚组肾、肺、脾组织中,均有特异性RSV G蛋白呈持续阳性表达。各个RSV亚组肾小球RSV G蛋白定量分析结果显示,RSV 0、7、15及30 d亚组RSV G蛋白表达水平呈逐渐增强趋势,并维持在高水平,但在RSV 60、90及120 d亚组又呈逐渐减弱趋势。⑤于荧光显微镜下观察各个RSV亚组SD大鼠肾组织RSV G蛋白荧光免疫检测结果显示,RSV G蛋白与DAPI蓝染的细胞核重叠。⑥透射电子显微镜下观察发现,RSV组肾组织中RSV颗粒持续存在,RSV 120 d亚组肾小球超微结构仍存在病理改变。

结论

RSV G蛋白在RSV感染SD大鼠肾病病理模型造模成功后,大鼠肾、肺、脾组织中RSV G蛋白呈持续阳性表达,证明RSV呈持续感染状态。这一结果或提示,包括RSV在内的呼吸道病毒持续感染,是导致微小病变型肾病综合征(MCNS)患儿免疫功能紊乱的主要原因。

Objective

To study the evidence of persistent infection of respiratory syncytial virus (RSV) in SD rats pathological model of nephropathy which were infected by RSV.

Methods

A total of 62 cases of specific pathogen-free male SD rats with 2-month-old, 180-200 g of body weight were selected and randomly divided into RSV groups (n=32) and control groups (n=27) by randomized digital table method. ①RSV groups were set up by dealing with RSV fluid, pock forming unit (PFU)=6×106 (0.4 mL/d via intraperitoneal and 0.2 mL/d via nasal) for 3 days; control groups were set up by dealing with phosphate buffer saline (PBS) fluid (0.4 mL/d via intraperitoneal and 0.2 mL/d via nasal) for 3 days. The day before injection was regarded as 0 d, while the 1st day began when models were successfully set up. Ultrastructural changes of glomeruli in SD rats at 7th day and 60th day after being successfully set up of a pathological model of nephropathy were observed by electron microscopy, in order to judge whether the pathological models of nephropathy to SD rats were successfully built or not. ②A total of 35 cases of SD rats in RSV groups were randomly divided into 7 subgroups by randomized digital table method, such as RSV 0, 7, 15, 30, 60 d, 90, 120 d subgroups, 5 rats in each RSV subgroup; while 27 cases of SD rats in control groups were randomly divided into 7 subgroups by the same method, such as PBS 0, 7, 15, 30, 60, 90, 120 d subgroups, and 5, 5, 5, 3, 3, 3, 3 cases of SD rats in each PBS subgroup, respectively. Biochemical parameters including levels of 24 h urinary protein, serum albumin and serum creatinine were measured in each subgroup, and the parameters were analyzed by statistical methods. ③All SD rats in RSV and PBS subgroups were killed after biochemical parameters being measured, and then the inferior 2/3 of left kidneys, left lungs and spleens of each rat were harvested, fixed by 4% paraformaldehyde solution for 24 h, and embedded by paraffin to complete hematoxylin-eosin (HE) staining. Each slice was observed under light microscope to find out whether pathomorphological changes existed or not. ④With RSV G protein monoclonal antibody as primary antibody, immunohistochemical specimens of SD rats' kidneys, lungs and spleens in 7 RSV subgroups were made out to find evidence of RSV G protein under light microscope. ⑤With RSV G protein monoclonal antibodies as primary antibody combined with green fluorescence, blue stain nuclei by 4', 6-diamidino-2-phenylindole (DAPI) at the same time, all SD rats' kidneys in RSV subgroups were cut into fluoroimmunoassay slices to find out the evidence of RSV G protein and the relation between its location and the nucleus. ⑥Harvesting the remaining 1/3 of the left kidney, with 3% glutaraldehyde fixation before sent to the West China Hospital, Sichuan University, SD rat's glomerular ultrastructural pathology structure changes in each RSV subgroup were observed under electronic microscope, meanwhile RSV particles were searched.

Results

①The pathological model of nephropathy SD rats in RSV group were duplicated successfully, as same as the model of SD rats in control group. ②Comparison of proteinuria in 24 h at the same point between RSV subgroups and PBS subgroups suggested that there were no statistical differences on 0 and 90th day (P>0.05), while the proteinuria in 24 h of RSV 7, 15, 30, 60, 120 d subgroups were all significantly higher than those in PBS subgroups at the same point (t=6.9, 3.1, 3.9, 2.2, 5.6; P<0.05). However, there were no significantly statistical differences in comparison of serum albumin and serum creatinine between RSV subgroups and PBS subgroups at the same point (P>0.05). ③HE stains showed that pathological changes at different levels of kidneys, lungs and spleens were observed in RSV 7, 15, 30, 60, 90, 120 d subgroups compared with RSV 0 d subgroup. ④Immunohistochemical stains showed that RSV G protein expressed positively in RSV 7, 15, 30, 60, 90, 120 d subgroups' kidneys, lungs and spleens while RSV 0 d subgroup had no positive expression. Quantitative analysis of RSV G protein suggested that the expression of RSV G protein increased gradually before day 30th and maintained at a high level, and then decreased after day 60th. ⑤Fluorescence staining suggested that RSV G proteins were located in the RSV infected cells' nuclei. ⑥RSV particles were observed in RSV subgroups' kidneys under electronic microscopy and glomerular pathogenesis persisted even on day 120th.

Conclusions

The expression of RSV G protein from 7th to 120th day successfully demonstrate that RSV could persist on a long time in RSV nephropathy rats, which may caused by immune dysfunction with RSV and it's persistence.

表1 各个RSV亚组与相同时间点PBS亚组SD大鼠的24 h尿蛋白定量、血清白蛋白及血清肌酐水平比较
表2 各个RSV亚组SD大鼠RSV G蛋白亮点数比较(个,±s)
图1 光镜观察RSV亚组与PBS亚组SD大鼠肾、肺、脾组织形态、结构比较(图1A:RSV 90 d 亚组SD大鼠肾组织;图1B:RSV 120 d 亚组SD大鼠肺组织;图1C:RSV 120 d 亚组SD大鼠脾组织;图1D:PBS 30 d 亚组SD大鼠肾组织;图1E:PBS 120 d 亚组SD大鼠肺组织;图1F:PBS 90 d 亚组SD大鼠脾组织) (HE染色,高倍镜)
图2 RSV亚组SD大鼠肾、肺、脾组织RSV G蛋白免疫组化检测结果比较(图2A:RSV 90 d亚组肾组织;图2B:RSV 30 d亚组肺组织;图2C:RSV 90 d亚组脾组织)(HE染色,高倍镜)
图3 RSV 0 d亚组与RSV 120 d亚组SD大鼠肾组织RSV G蛋白荧光免疫检测结果比较(图3A: RSV G蛋白;图3B: DAPI染色;图3C:重叠显像;图3D:RSV G蛋白;图3E:DAPI染色;图3F:重叠影像)(高倍镜)
图4 RSV组SD大鼠肾组织HeLa细胞结构的电子显微镜观察结果比较(图4A:RSV感染48 h的HeLa细胞;图4B:RSV 7 d亚组;图4C:RSV 30 d亚组;图4D:RSV 60 d亚组)(枸橼酸铅染色,高倍镜)
1
Oh J, Kemper MJ. Minimal change (steroid sensitive) nephrotic syndrome in children: new aspects on pathogenesis and treatment[J]. Minerva Pediatr, 2012, 64(2): 197-204.
2
Hulkko J, Patrakka J, Lal M, et al. Neph1 is reduced in primary focal segmental glomerulosclerosis, minimal change nephrotic syndrome, and corresponding experimental animal models of adriamycin-induced nephropathy and puromycin aminonucleoside nephrosis[J]. Nephron Extra, 2014, 19, 4(3): 146-154.
3
Wang L, Li Q, Wang L, et al. The role of Th17/IL-17 in the pathogenesis of primary nephritic syndrome in children[J]. Kidney Blood Press Res, 2013, 37(4-5): 332-345.
4
Zhang SY, Audard V, Fan Q, et al. Immunopathogenesis of idiopathic nephrotic syndrome[J]. Contrib Nephrol, 2011, 169(1): 94-106.
5
吴瑾,王峥,郭妍南,等.Toll样受体3在呼吸道合胞病毒肾病大鼠发病中的作用研究[J].实用儿科临床杂志,2009,24(4):41-43.
6
吴瑾,王峥,郭妍南,等.Toll样受体3在呼吸道合胞病毒肾病大鼠发病中的作用研究[J].实用儿科临床杂志,2009,24(8):600-603.
7
Liu XM, Wang Z, Guo Y. Respiratory syncytial virus nephropathy in rats[J]. Kidney Int, 2007, 71(5):388-396.
8
Tripp RA. Pathogenesis of respiratory syncytial virus infection[J]. Viral Immunol, 2004, 17(2): 165-181.
9
Sheng ZY, Wang J, Wu JM, et al. Technology of virus plaques modified by using methyl cellulos[J]. Immun Magaz, 2014, 4(28): 363-368.
10
Li C, Zhou X, Zhong Y, et al. A recombinant g protein plus cyclosporine A-based respiratory syncytial virus vaccine elicits humoral and regulatory t cell responses against infection without vaccine-enhanced disease[J]. J Immunol, 2016,196(4):1721-1731.
11
Johnson SM, Mcnally BA, Ioannidis I, et al. Respiratory syncytial virus uses CX3CR1 as a receptor on primary human airway epithelial cultures[J]. PLoS Pathog, 2015,11(12):e1005259.
12
Qi F, Wang D, Liu J, et al. Respiratory macrophages and dendritic cells mediate respiratory syncytial virus-induced IL-33 production in TLR3- or TLR7-dependent manner[J]. Int Immunopharmacol, 2015,29(2):408-415.
13
Oumouna M, Weitnauer M, Mijošek V, et al. Cell-contact dependent inhibition of monocytes by airway epithelial cells and reversion by infection with respiratory syncytial virus[J]. Immunobiology, 2015,220(11):1240-1245.
14
Liljeroos L, Krzyzaniak MA, Helenius A, et al. Architecture of respiratory syncytial virus revealed by electron cryotomography[J]. Proceed Nation Academy Sci, 2013, 110(27):11133-11138.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[3] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[4] 刘静, 王燕妮, 王继萍. 儿童毛发移植应用前景及病例讨论[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 368-368.
[5] 郑宝英, 黄小兰, 贾楠, 朱春梅. 儿童难治性肺炎支原体肺炎早期预警指标[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 215-221.
[6] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[7] 丁荷蓓, 王珣, 陈为国. 七氟烷吸入麻醉与异丙酚静脉麻醉在儿童腹股沟斜疝手术中的应用比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 570-574.
[8] 曾纪晓, 徐晓钢, 王欣星, 刘斐, 兰梦龙, 陶波圆, 梁子建, 叶志华, 罗媛圆. 达芬奇机器人辅助Swenson-like巨结肠根治术[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 239-243.
[9] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[10] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[11] 张佳臣, 宋红欣. 儿童青少年等效球镜屈光度变化与屈光不正进展相关性的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 217-222.
[12] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[13] 王晓瑜, 郭群英, 牛雅萌, 赵成松. 公立儿童医院促进儿科就医均等化实践探析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 383-387.
[14] 陈晓胜, 何佳, 刘方, 吴蕊, 杨海涛, 樊晓寒. 直立倾斜试验诱发31 秒心脏停搏的植入心脏起搏器儿童一例并文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 488-494.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要