切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2007, Vol. 03 ›› Issue (03) : 145 -148. doi: 10.3877/cma.j.issn.1673-5250.2007.03.107

论著

地塞米松及葡萄糖对缺血缺氧性脑损伤新生大鼠血糖和脑ATP生成率及ATP酶分解活性的影响
陈凌梅, 李炜如   
  1. 成都市儿童医院(成都,610017)
    四川大学华西第二医院儿科
  • 出版日期:2007-06-01

Changes of blood sugar, mitochondrial ATP production rate and ATP synthase activity in dexamethasone and glucose treated neonatal rat after hypoxic-ischemic brain damage

Lin-mei CHEN, Wei-ru LI   

  1. Department of Pediatic, West China Second Hospital, Sichuan University, Chengdu, 610041, China
  • Published:2007-06-01
引用本文:

陈凌梅, 李炜如. 地塞米松及葡萄糖对缺血缺氧性脑损伤新生大鼠血糖和脑ATP生成率及ATP酶分解活性的影响[J]. 中华妇幼临床医学杂志(电子版), 2007, 03(03): 145-148.

Lin-mei CHEN, Wei-ru LI. Changes of blood sugar, mitochondrial ATP production rate and ATP synthase activity in dexamethasone and glucose treated neonatal rat after hypoxic-ischemic brain damage[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2007, 03(03): 145-148.

目的

缺血缺氧性脑损伤(HIBD)的发生与脑组织能量耗竭、神经元结构和功能障碍有关。既往的研究显示,地塞米松预处理可产生脑保护作用。但关于缺氧缺血后,给予地塞米松及葡萄糖治疗对脑能量代谢影响的研究不多。本研究通过测定血糖、脑组织ATP生成率及ATP酶分解活性,了解地塞米松及葡萄糖治疗对缺氧缺血新生大鼠能量代谢的影响。

方法

将7 d龄SD大鼠60只随机分成缺血缺氧性脑损伤组(HIBD组)、地塞米松治疗组及葡萄糖治疗组。3组动物经缺氧缺血处理后,HIBD组不做治疗、地塞米松组及葡萄糖治疗组分别以地塞米松及葡萄糖进行治疗。检测0 h,24 h,48 h,72 h实验大鼠的血糖、脑线粒体ATP生成率及ATP酶分解活性变化。

结果

①缺氧缺血处理后,大鼠血糖、脑组织线粒体ATP生成率及ATP酶分解活性下降;②地塞米松治疗组ATP生成率24 h、48 h时较HIBD组高;ATP酶分解活性24 h时较HIBD组高;③葡萄糖治疗组脑组织线粒体ATP生成率48 h时较HIBD组高;④72 h时3组动物ATP生成率及ATP酶分解活性差异无显著意义;⑤地塞米松治疗组及葡萄糖治疗组的血糖在24 h时较HIBD组高;⑥48 h及72 h时,3组血糖值差异无显著意义。

结论

地塞米松及葡萄糖可在短期内改善缺血缺氧新生大鼠脑组织能量供应,并对血糖产生影响。

Objective

To study the changes in blood sugar, mitochondrial ATP production rate and ATP synthase activity in dexamethasone treated and in glucose treated neonatal rats after hypoxic-ischemic brain damage.

Methods

7 days old rats were randomly assigned to HIBD group, dexamethasone treated group and glucose treated group. Had been made cerebral hypoxic-ischemic, the HIBD animals were divided into 0 h, 24 h, 48 h and 72 h groups; the dexamethasone treated animals and glucose treated animals were divided into 24 h, 48 h and 72 h groups and treated with dexamethasone and glucose separately. Then we examined changes in blood sugar, mitochondrial ATP production rate and ATP synthase activity.

Results

① After hypoxic-ischemic, the rats' blood sugar, mitochondrial ATP production rate and ATP synthase activity were decreased. ②In dexamethasone treated group the ATP production rate at 24 h and 48 h, ATP synthase activity at 24 h were higher than HIBD group.③ In glucose treated group, the ATP production rate at 48 h were higher than HIBD group.④ At 72 h, there were no differences in mitochondrial ATP production rate and ATP synthase activity between 3 groups.⑤ The blood sugar in dexamethasone treated group and in glucose treated group were higher than HIBD group at 24 h.⑥ At 48 h and 72 h, there were no differences in blood sugar between 3 groups.

Conclusion

Dexamethasone and glucose improved HIBD rats' cerebral energy metabolize in a short term and affected blood glucose.

1 王淳本主编.实用生物化学与分子生物学实验技术.武汉:湖北科技出版社,2002,202-204.
2 汪谦主编临床医学实验方法.北京:科学出版社,2002,283-285.
3 Puka-Sundvall M,Wallin C,Gilland E,et al. Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats:Relationship to activation of caspase-3 and neuronal injury. Brain Res Dev Brain Res,2000,125(1-2):43-50.
4 Links. Glucocorticoids and the prevention of hypoxic- ischemicbrain damage. Neurosci Biobehav Rev,1997,21 (2) : 175-179.
5 Ikeda T, Mishima K, Yoshikawa T, et al. Dexamethasone prevents long-lasting learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behav Brain Res,2002,136(1) :161-170.
6 Ikeda T, Mishima K, Yoshikawa T, et al. Dexamethasone prevents long-lasting learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behav Brain Res,2002 Oct17,136(1):161-170.
7 Kauffman KS,Seidler FJ,Slokin TA. Prenatal dexmethasone exposure cause loss of neonatal hypoxia tolerance:Cellular mechanism. Exp Neurol, 1996,139(1) :34-38.
8 Tuor UI, Chumas PD, Del Bigio MR. Prevention of hypoxic-ischemic brain damage with dexamethasone is dependent on age and not influenced by fasting. Exp Neurol, 1995,132(1) : 116-122.
9 Tuor UI, Del Bigio MR. Protection against hypoxic-ischemic damage with corticosterone and dexamethasone:inhibition of effect by a glucocorticoid antagonist RU38486. Brain Res, 1996, 743 (1-2):258-262.
[1] 应音, 孙丽丽, 贝丽君, 金珊. 妊娠期糖尿病产妇分娩新生儿低血糖的危险因素分析[J]. 中华危重症医学杂志(电子版), 2022, 15(03): 226-229.
[2] 费扬, 孙丽琴, 楼琴华, 张芳英, 胡骏程, 任梦, 徐晓艳, 李龙飞. 基于新型复合量表的家庭管理模式对糖尿病患者血糖控制的影响[J]. 中华危重症医学杂志(电子版), 2022, 15(02): 131-134.
[3] 邬龙海, 黄淼, 龚云辉, 喻云倩. 血清趋化因子在妊娠期糖尿病孕妇中的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 357-362.
[4] 崔蕾, 段怡, 高志峰, 张欢. 肝移植新肝期高血糖相关发病机制及不良预后研究进展[J]. 中华移植杂志(电子版), 2022, 16(02): 114-118.
[5] 雷建东, 吴林军, 季沙, 蒋志敏. 糖尿病肾病维持性血液透析患者低血糖预测模型及评分量表的建立[J]. 中华肾病研究电子杂志, 2022, 11(06): 311-317.
[6] 谈莉, 周华. 重症患者营养治疗中的血糖监测[J]. 中华重症医学电子杂志, 2022, 08(04): 304-309.
[7] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[8] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
[9] 樊宗山, 赵凤琼, 黄海, 万宇, 胡燕君, 曹乐薇. 健康信念与家庭功能对老年糖尿病视网膜病变患者血糖控制的影响[J]. 中华老年病研究电子杂志, 2022, 09(01): 24-27.
[10] 买买提·依斯热依力, 依力汗·依明, 王永康, 阿巴伯克力·乌斯曼, 艾克拜尔·艾力, 李义亮, 克力木·阿不都热依木. 氧化应激对3T3-L1前脂肪细胞中GLP-1/DPP-4信号通路以及炎症因子表达的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 186-191.
[11] 刘倩影, 刘雪彦, 周佩如, 胡申玲, 叶倩呈, 黄洁微. 糖尿病肾病患者血液透析期间低血糖管理的证据总结[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 22-27.
[12] 沈地, 权莉, 梁存禹, 孟齐, 艾比拜·玉素甫. 葡萄糖目标范围内时间与2型糖尿病患者尿微量白蛋白水平的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 249-255.
[13] 叶晓玲, 张宇, 万新月. 小肠电刺激减少肥胖大鼠进食时间[J]. 中华肥胖与代谢病电子杂志, 2022, 08(02): 93-96.
[14] 赖菲菲, 李枢, 吴伟琼, 李玉, 李慧芳, 张小娜. 电子数字化远程管理对2型糖尿病患者糖脂代谢和生活质量的影响[J]. 中华肥胖与代谢病电子杂志, 2022, 08(02): 104-108.
[15] 罗宁, 陈蓉. 非典型非酮症高血糖性偏侧舞蹈症三例[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 254-259.
阅读次数
全文


摘要