切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2007, Vol. 03 ›› Issue (03) : 145 -148. doi: 10.3877/cma.j.issn.1673-5250.2007.03.107

论著

地塞米松及葡萄糖对缺血缺氧性脑损伤新生大鼠血糖和脑ATP生成率及ATP酶分解活性的影响
陈凌梅, 李炜如   
  1. 成都市儿童医院(成都,610017)
    四川大学华西第二医院儿科
  • 出版日期:2007-06-01

Changes of blood sugar, mitochondrial ATP production rate and ATP synthase activity in dexamethasone and glucose treated neonatal rat after hypoxic-ischemic brain damage

Lin-mei CHEN, Wei-ru LI   

  1. Department of Pediatic, West China Second Hospital, Sichuan University, Chengdu, 610041, China
  • Published:2007-06-01
引用本文:

陈凌梅, 李炜如. 地塞米松及葡萄糖对缺血缺氧性脑损伤新生大鼠血糖和脑ATP生成率及ATP酶分解活性的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2007, 03(03): 145-148.

Lin-mei CHEN, Wei-ru LI. Changes of blood sugar, mitochondrial ATP production rate and ATP synthase activity in dexamethasone and glucose treated neonatal rat after hypoxic-ischemic brain damage[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2007, 03(03): 145-148.

目的

缺血缺氧性脑损伤(HIBD)的发生与脑组织能量耗竭、神经元结构和功能障碍有关。既往的研究显示,地塞米松预处理可产生脑保护作用。但关于缺氧缺血后,给予地塞米松及葡萄糖治疗对脑能量代谢影响的研究不多。本研究通过测定血糖、脑组织ATP生成率及ATP酶分解活性,了解地塞米松及葡萄糖治疗对缺氧缺血新生大鼠能量代谢的影响。

方法

将7 d龄SD大鼠60只随机分成缺血缺氧性脑损伤组(HIBD组)、地塞米松治疗组及葡萄糖治疗组。3组动物经缺氧缺血处理后,HIBD组不做治疗、地塞米松组及葡萄糖治疗组分别以地塞米松及葡萄糖进行治疗。检测0 h,24 h,48 h,72 h实验大鼠的血糖、脑线粒体ATP生成率及ATP酶分解活性变化。

结果

①缺氧缺血处理后,大鼠血糖、脑组织线粒体ATP生成率及ATP酶分解活性下降;②地塞米松治疗组ATP生成率24 h、48 h时较HIBD组高;ATP酶分解活性24 h时较HIBD组高;③葡萄糖治疗组脑组织线粒体ATP生成率48 h时较HIBD组高;④72 h时3组动物ATP生成率及ATP酶分解活性差异无显著意义;⑤地塞米松治疗组及葡萄糖治疗组的血糖在24 h时较HIBD组高;⑥48 h及72 h时,3组血糖值差异无显著意义。

结论

地塞米松及葡萄糖可在短期内改善缺血缺氧新生大鼠脑组织能量供应,并对血糖产生影响。

Objective

To study the changes in blood sugar, mitochondrial ATP production rate and ATP synthase activity in dexamethasone treated and in glucose treated neonatal rats after hypoxic-ischemic brain damage.

Methods

7 days old rats were randomly assigned to HIBD group, dexamethasone treated group and glucose treated group. Had been made cerebral hypoxic-ischemic, the HIBD animals were divided into 0 h, 24 h, 48 h and 72 h groups; the dexamethasone treated animals and glucose treated animals were divided into 24 h, 48 h and 72 h groups and treated with dexamethasone and glucose separately. Then we examined changes in blood sugar, mitochondrial ATP production rate and ATP synthase activity.

Results

① After hypoxic-ischemic, the rats' blood sugar, mitochondrial ATP production rate and ATP synthase activity were decreased. ②In dexamethasone treated group the ATP production rate at 24 h and 48 h, ATP synthase activity at 24 h were higher than HIBD group.③ In glucose treated group, the ATP production rate at 48 h were higher than HIBD group.④ At 72 h, there were no differences in mitochondrial ATP production rate and ATP synthase activity between 3 groups.⑤ The blood sugar in dexamethasone treated group and in glucose treated group were higher than HIBD group at 24 h.⑥ At 48 h and 72 h, there were no differences in blood sugar between 3 groups.

Conclusion

Dexamethasone and glucose improved HIBD rats' cerebral energy metabolize in a short term and affected blood glucose.

1 王淳本主编.实用生物化学与分子生物学实验技术.武汉:湖北科技出版社,2002,202-204.
2 汪谦主编临床医学实验方法.北京:科学出版社,2002,283-285.
3 Puka-Sundvall M,Wallin C,Gilland E,et al. Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats:Relationship to activation of caspase-3 and neuronal injury. Brain Res Dev Brain Res,2000,125(1-2):43-50.
4 Links. Glucocorticoids and the prevention of hypoxic- ischemicbrain damage. Neurosci Biobehav Rev,1997,21 (2) : 175-179.
5 Ikeda T, Mishima K, Yoshikawa T, et al. Dexamethasone prevents long-lasting learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behav Brain Res,2002,136(1) :161-170.
6 Ikeda T, Mishima K, Yoshikawa T, et al. Dexamethasone prevents long-lasting learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behav Brain Res,2002 Oct17,136(1):161-170.
7 Kauffman KS,Seidler FJ,Slokin TA. Prenatal dexmethasone exposure cause loss of neonatal hypoxia tolerance:Cellular mechanism. Exp Neurol, 1996,139(1) :34-38.
8 Tuor UI, Chumas PD, Del Bigio MR. Prevention of hypoxic-ischemic brain damage with dexamethasone is dependent on age and not influenced by fasting. Exp Neurol, 1995,132(1) : 116-122.
9 Tuor UI, Del Bigio MR. Protection against hypoxic-ischemic damage with corticosterone and dexamethasone:inhibition of effect by a glucocorticoid antagonist RU38486. Brain Res, 1996, 743 (1-2):258-262.
[1] 王友芳, 李兴超, 刘清敏, 刘德彬, 刘松伍, 郭冬冬, 车峰远. 应激性高血糖指数对经皮冠状动脉介入术后急性心肌梗死患者发生主要不良心脑血管事件的预测价值[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 124-129.
[2] 王招娣, 孙丽丽, 温佩婷, 吴坤. 成人肠外营养患者住院期间胰岛素添加管理的证据总结[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(01): 32-38.
[3] 盛志强, 袁嫣然. ATP1A3基因突变相关疾病1个家系报道及文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 331-338.
[4] 李倩, 刘倩, 朱海玲, 倪娟, 任宝芹, 刘长云. 重组人生长激素治疗特发性矮小症患儿的疗效[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 346-352.
[5] 李莉, 马梅, 黄欣欣, 杨丹林, 潘勉. 妊娠期糖尿病早孕期相关影响因素及基于早孕期孕妇糖脂相关生化指标与人口学资料的4种机器学习算法构建妊娠期糖尿病预测模型的临床价值[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 105-113.
[6] 毛建. 老年糖尿病患者社区获得性肺炎病原分布及空腹血糖、糖化血红蛋白的预测价值[J/OL]. 中华实验和临床感染病杂志(电子版), 2023, 17(06): 408-415.
[7] 王石林, 叶继章, 丘向艳, 陈桂青, 邹晓敏. 慢性阻塞性肺疾病真菌感染风险早期预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 773-776.
[8] 涂晓文. 糖尿病肾脏病的靶点药物研发进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 240-240.
[9] 何娅妮. 糖尿病肾脏病患者的血糖监测评估与降糖治疗[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 180-180.
[10] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[11] 崔秋子, 姚红曼, 艾迎春. 监测NLR、PLR、CAR、白蛋白、血钙及血糖指标水平对急性胰腺炎患者急性肾损伤的预测价值分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 244-248.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J/OL]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 广东省护士协会介入护士分会, 广东省医师协会介入医师分会. 原发性肝癌低血糖患者护理规范管理专家共识[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 709-714.
[14] 袁蔡骏, 闻萍, 徐玲玲. 连续血糖监测在慢性肾脏病合并糖尿病患者中的应用研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(01): 79-82.
[15] 曹慧, 刘华, 赵婷奕, 唐茂庆, 韩骐, 于永华. 非酮症高血糖性偏身舞蹈症一例报道及文献回顾[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 501-505.
阅读次数
全文


摘要