Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2025, Vol. 21 ›› Issue (04): 411 -419. doi: 10.3877/cma.j.issn.1673-5250.2025.04.006

Original Article

Quantitative evaluation of brain development in children using MRI magnetization prepared rapid acquisition gradient echo sequences

Sai Liu, Yi Liao, Fenglin Jia, Xuesheng Li, Xinmao Ma, Pei Li, Gang Ning, Haibo Qu()   

  1. Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2024-10-08 Revised:2025-07-10 Published:2025-08-01
  • Corresponding author: Haibo Qu
  • Supported by:
    National Key R&D Program(2018YFC1002202)
Objective

To explore the roles of quantitative evaluation of T1 values in tissues of different brain regions of children using the magnetization prepared rapid acquisition gradient echo (MP2RAGE) sequence of MRI, and the characteristics of T1 values in tissues of different brain regions of children with different gender and age.

Methods

A total of 71 children aged 3 to 18 years who underwent cranial MRI at West China Second University Hospital, Sichuan University, from May 2021 to June 2023, with no abnormal findings on imaging, were enrolled in this study. Among them, 37 were boys and 34 were girls, with a median age of 8.7 years (5.1, 11.7 years). All children underwent cranial MP2RAGE sequence scanning using a 3.0T magnetic resonance scanner, and the T1 values of tissues in 15 brain regions were measured, including the cerebellum, middle cerebellar peduncle, ventral and dorsal pons, frontal lobe white matter, genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, temporal lobe white matter, thalamus, caudate nucleus head, occipital lobe white matter, parietal lobe white matter, and precentral and postcentral gyrus white matter. Spearman rank correlation analysis was used to analyze the correlation between T1 values and age in tissues of each brain region. T1 values between different genders were statistically compared using independent-samples t test or Wilcoxon rank sum test. The procedures followed in this study complied with the requirements of the Helsinki Declaration of the World Medical Association revised in 2013, and informed consent form for clinical research was signed with the guardian of each child.

Results

①The correlation analysis of T1 values of tissues in various brain regions with age in 71 children showed that the T1 values of the dorsal pons, frontal white matter, temporal white matter, parietal white matter, and head of caudate nucleus were all strongly negatively correlated with age (rs=-0.793 to -0.610, P<0.001), while the T1 values of the thalamus, occipital white matter, anterior limb of the internal capsule, genu and splenium of the corpus callosum, and anterior and posterior central gyrus were all moderately negatively correlated with age (rs=-0.588 to -0.413, P<0.001). The T1 values of the cerebellum, middle foot of the cerebellum, and posterior limb of the internal capsule were weakly negatively correlated with age (rs=-0.316 to -0.203, P<0.05), and there was no statistically significant correlation between the T1 value of the ventral pons and age (rs=-0.051, P>0.05). ②The T1 values of middle foot of the cerebellum, pons dorsal region, and head of the caudate nucleus in male children were significantly higher than those in female children (t=2.43, 2.66, 2.44; P=0.018, 0.010, 0.017). ③Among the 71 children, the tissues of three regions with the highest T1 values were the caudate nucleus head (1 333.8±49.4) ms, thalamus (1 067.4±59.1) ms, and dorsal pons (1 003.2±38.4) ms, respectively. The tissues of three regions with the lowest T1 values were the splenium of the corpus callosum (777.4±25.1) ms, the genu of the corpus callosum (783.0±35.9) ms, and the posterior limb of the internal capsule (834.5±38.0) ms.

Conclusions

MRI MP2RAGE can quantitatively and non-invasively reflect the changing trend of brain tissue during the development of children. T1 values of tissues in most brain regions decrease with age during the development of children′s brain, and there are also differences between different genders and different brain regions tissues.

图1 本研究1例受试儿(男性,10岁)颅脑各脑区脑组织T1值测量ROI示意图(图1A:1、2脑区;图1B:3、4脑区;图1C:5脑区;图1D:6~13脑区;图1E:14脑区;图1F:15脑区)注:1~15分别指小脑、小脑中脚、脑桥腹侧、脑桥背侧、颞叶白质、额叶白质、胼胝体膝部、尾状核头、内囊前肢、内囊后肢、丘脑、胼胝体压部、枕叶白质、顶叶白质及中央前、后回白质。ROI为感兴趣区
表1 本研究71例受试儿左、右脑不同脑区的脑组织T1值比较(ms)
图2 本研究71例受试儿颅脑各脑区脑组织T1值与其年龄的相关性分析(图2A:小脑区脑组织T1值与受试儿年龄的相关性分析;图2B:小脑中脚区脑组织T1值与受试儿年龄的相关性分析;图2C:脑桥腹侧区脑组织T1值与受试儿年龄的相关性分析;图2D:脑桥背侧区脑组织T1值与受试儿年龄的相关性分析;图2E:额叶白质区脑组织T1值与受试儿年龄的相关性分析;图2F:胼胝体膝部区脑组织T1值与受试儿年龄的相关性分析;图2G:内囊前肢区脑组织T1值与受试儿年龄的相关性分析;图2H:内囊后肢区脑组织T1值与受试儿年龄的相关性分析;图2I:胼胝体压部区脑组织T1值与受试儿年龄的相关性分析;图2J:额叶白质区脑组织T1值与受试儿年龄的相关性分析;图2K:尾状核头区脑组织T1值与受试儿年龄的相关性分析;图2L:丘脑区脑组织T1值与受试儿年龄的相关性分析;图2M:枕叶白质区脑组织T1值与受试儿年龄的相关性分析;图2N:顶叶白质区脑组织T1值与受试儿年龄的相关性分析;图2O:中央前、后回白质区脑组织T1值与受试儿年龄的相关性分析)
表2 男、女性受试儿颅脑各脑区脑组织T1值比较(ms)
图3 本研究71例受试儿颅脑15个脑区脑组织T1值的分布图
表3 本研究71例受试儿不同脑区脑组织T1值两两比较结果
[1]
Tabari A, Conklin J, Figueiro Longo MG, et al. Comparison of ultrafast wave-controlled aliasing in parallel imaging (CAIPI) magnetization-prepared rapid acquisition gradient echo (MP-RAGE) and standard MP-RAGE in non-sedated children: initial clinical experience[J]. Pediatr Radiol, 2021, 51(11): 2009-2017. DOI: 10.1007/s00247-021-05117-5.
[2]
Romascano D, Piredda GF, Caneschi S, et al. Normative volumes and relaxation times at 3T during brain development[J]. Sci Data, 2024, 11(1): 429. DOI: 10.1038/s41597-024-03267-3.
[3]
Does MD. Inferring brain tissue composition and microstructure via MR relaxometry[J]. Neuroimage, 2018, 182: 136-148. DOI: 10.1016/j.neuroimage.2017.12.087.
[4]
Dubois J, Alison M, Counsell SJ, et al. MRI of the neonatal brain: a review of methodological challenges and neuroscientific advances[J]. J Magn Reson Imaging, 2021, 53(5): 1318-1343. DOI: 10.1002/jmri.27192.
[5]
Filimonova E, Amelina E, Sazonova A, et al. Assessment of normal myelination in infants and young children using the T1w/T2w mapping technique[J]. Front Neurosci, 2023, 17: 1102691. DOI: 10.3389/fnins.2023.1102691.
[6]
Kelley KW, Paşca SP. Human brain organogenesis: toward a cellular understanding of development and disease[J]. Cell, 2022, 185(1): 42-61. DOI: 10.1016/j.cell.2021.10.003.
[7]
Conte S, Zimmerman D, Richards JE. White matter trajectories over the lifespan[J]. PLoS One, 2024, 19(5): 1. DOI: 10.1371/journal.pone.0301520.
[8]
Hutchinson G, Thotland J, Pisharady PK, et al. T1 relaxation and axon fibre configuration in human white matter[J]. NMR Biomed, 2024, 37(12): e5234. DOI: 10.1002/nbm.5234.
[9]
Droby A, Thaler A, Giladi N, et al. Whole brain and deep gray matter structure segmentation: quantitative comparison between MPRAGE and MP2RAGE sequences[J]. PLoS One, 2021, 16(8): e0254597. DOI: 10.1371/journal.pone.0254597.
[10]
Morel B, Piredda GF, Cottier JP, et al. Normal volumetric and T1 relaxation time values at 1.5 T in segmented pediatric brain MRI using a MP2RAGE acquisition[J]. Eur Radiol, 2021, 31(3): 1505-1516. DOI: 10.1007/s00330-020-07194-w.
[11]
Ho CY, Persohn S, Sankar M, et al. Development of myelin growth charts of the white matter using T1 relaxometry[J]. AJNR Am J Neuroradiol, 2024, 45(9): 1335-1345. DOI: 10.3174/ajnr.A8306.
[12]
Sotardi S, Gollub RL, Bates SV, et al. Voxelwise and regional brain apparent diffusion coefficient changes on MRI from birth to 6 years of age[J]. Radiology, 2021, 298(2): 415-424. DOI: 10.1148/radiol.2020202279.
[13]
Stüber C, Morawski M, Schäfer A, et al. Myelin and iron concentration in the human brain: a quantitative study of MRI contrast[J]. Neuroimage, 2014, 93 Pt 1: 95-106. DOI: 10.1016/j.neuroimage.2014.02.026.
[14]
Eminian S, Hajdu SD, Meuli RA, et al. Rapid high resolution T1 mapping as a marker of brain development: normative ranges in key regions of interest[J]. PLoS One, 2018, 13(6): e0198250. DOI: 10.1371/journal.pone.0198250.
[15]
Paus T, Zijdenbos A, Worsley K, et al. Structural maturation of neural pathways in children and adolescents: in vivo study[J]. Science, 1999, 283(5409): 1908-1911. DOI: 10.1126/science.283.5409.1908.
[16]
Lynch KM, Cabeen RP, Toga AW, et al. Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI[J]. Neuroimage, 2020, 212: 116672. DOI: 10.1016/j.neuroimage.2020.116672.
[17]
Wang S, Ledig C, Hajnal JV, et al. Quantitative assessment of myelination patterns in preterm neonates using T2-weighted MRI[J]. Sci Rep, 2019, 9(1): 12938. DOI: 10.1038/s41598-019-49350-3.
[18]
Sagi R, Taylor JSH, Neophytou K, et al. White matter associations with spelling performance[J]. Brain Struct Funct, 2024, 229(9): 2115-2135. DOI: 10.1007/s00429-024-02775-7.
[19]
Miao X, Qi M, Cui S, et al. Assessing sequence and relationship of regional maturation in corpus callosum and internal capsule in preterm and term newborns by diffusion-tensor imaging[J]. Int J Dev Neurosci, 2014, 34: 42-47. DOI: 10.1016/j.ijdevneu.2014.01.004.
[20]
Romero JE, Coupe P, Lanuza E, et al. Alzheimer′s disease neuroimaging initiative. Toward a unified analysis of cerebellum maturation and aging across the entire lifespan: a MRI analysis[J]. Hum Brain Mapp, 2021, 42(5): 1287-1303. DOI: 10.1002/hbm.25293.
[21]
Oldham S, Ball G, Fornito A. Early and late development of hub connectivity in the human brain[J]. Curr Opin Psychol, 2022, 44: 321-329. DOI: 10.1016/j.copsyc.2021.10.010.
[22]
Flood TF, Bhatt PR, Jensen A, et al. Age-dependent signal intensity changes in the structurally normal pediatric brain on unenhanced T1-weighted MR imaging[J]. AJNR Am J Neuroradiol, 2019, 40(11): 1824-1828. DOI: 10.3174/ajnr.A6254.
[23]
Paus T. Sex differences in the human brain: a developmental perspective[J]. Prog Brain Res, 2010, 186: 13-28. DOI: 10.1016/B978-0-444-53630-3.00002-6.
[24]
Ketcherside A, Baine J, Filbey F. Sex effects of marijuana on brain structure and function[J]. Curr Addict Rep, 2016, 3: 323-331. DOI: 10.1007/s40429-016-0114-y.
[25]
马瑞,郑青慧,王春丽,等. 4~6岁儿童动作技能与认知自我调节的相关性[J]. 上海体育大学学报2020, 44(12): 60-68. DOI: 10.16099/j.sus.2020.12.007.
[26]
Goodway JD, Gallahue DL, Ozmun JC. Understanding motor development: infants, children, adolescents[M]. New York: McGraw-Hill, 2012: 169.
[27]
Romascano D, Piredda GF, Caneschi S, et al. Normative volumes and relaxation times at 3T during brain development[J]. Sci Data, 2024, 11(1): 429. DOI: 10.1038/s41597-024-03267-3.
[28]
Morel B, Piredda GF, Cottier JP, et al. Normal volumetric and T1 relaxation time values at 1.5 T in segmented pediatric brain MRI using a MP2RAGE acquisition[J]. Eur Radiol, 2021, 31(3): 1505-1516. DOI: 10.1007/s00330-020-07194-w.
[1] Qingqing Liu, Jin Yu, Weize Xu, Zhiwei Zhang, Xiaohua Pan, Qiang Shu, Jingjing Ye. Value of OBICnet image classification model in ultrasound screening for congenital heart disease in children[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(08): 754-760.
[2] Junqing Zhang, Mi Zhou, Wenjun Zhang, Jing Tan, Lixue Yin. Ultrasound characteristics and correlation of liver hardness and left ventricular function in patients with liver cirrhosis with preserved ejection fraction[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(08): 768-776.
[3] Fang Liu, Zhan Zhang, Hui Liu, Ling Fang, Aizhen Wang, Doudou Ding, Miao Cui, Bailing Liu, Jie Wang. Echocardiographic characteristics and outcomes of primary cardiac tumors in children: a singlecentre retrospective study[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(05): 470-476.
[4] Xiuzhen Yang, Li Li, Zheming Xu, Jingjing Wang, Jingjing Ye. Contrast-enhanced voiding urosonography-based assessment of intrarenal reflux: spatial correlation of intrarenal reflux with DMSA scintigraphy findings[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(04): 348-353.
[5] Jiaoyan Tan, Li Yuan, Shen Jing, Wudan Guo, Wenjing Wu. Clinical application of two-dimensional shear wave elastography in evaluation of splenomegaly in children[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(03): 247-252.
[6] Chunnuo He, Zhimin Tian, Haoqiang Zhang, Huanxi Li, Kaipeng Zhuang, Yongjie Qiao, Shenghu Zhou, Ping Zhen. Salter pelvic osteotomy combined with proximal femoral osteotomy in treatment of children hip dysplasia[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(04): 391-401.
[7] Professional Committee of Child Allergology, Chinese Maternal and Child Health Association, Working Group of Expert Consensus on Diagnosis and Treatment of Pediatric Skin Wound (2025 version). Expert consensus on diagnosis and treatment of pediatric skin wound (2025 version)[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2025, 20(05): 374-383.
[8] Mingmei Wang, Yong Li. Imaging diagnosis and progress of renal pelvic cancer[J]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(04): 412-417.
[9] Reheman Rexiati·, Kakaer Aerziguli·, Abudureheman Ayimunisa·, Ataola Abulimiti·, Abulikemu Kuerbanjiang·, Wusiman Sulitan·, Xin An, Batuer Jiasuer·. Safety and perioperative management of circumcision in children with hemophilia A[J]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(04): 436-440.
[10] Dong Chen, Xinjian Jia, Qiang Wei, Tao Liu, Fei Tian, Xiang Zhou, Chunchen Han. Clinical application of total laparoscopic radical surgery for pediatric choledochal cysts[J]. Chinese Journal of Laparoscopic Surgery(Electronic Edition), 2025, 18(03): 152-156.
[11] Jixiao Zeng, Xiaogang Xu, Fei Liu, Menglong Lan, Boyuan Tao, Zijian Liang, Lini Wen, zhizu Zhong. Robotic pancreaticoduodenectomy for malignant pancreaticobiliary tumors in children[J]. Chinese Journal of Laparoscopic Surgery(Electronic Edition), 2025, 18(03): 157-161.
[12] Mang Lu, Xiaolu Ma, Fu Shen, Hao Wang, Chengwei Shao, Wei Zhang, Jianping Lu, Haidi Lu. MRI-based deep learning reconstruction in preoperative evaluating of rectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2025, 14(05): 445-456.
[13] Jing Gao, Lin Zhang, Xin Shen. Predictive value of AIMS 65 score, Child-Pugh score and MELD score combined with coagulation indices for acute-on-chronic liver failure in patients with cirrhosis[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2025, 15(04): 352-358.
[14] Tongtong Jiang, Ping Rong, Rong Ma, Qianfang Fu, Yatong Zhang, Shuyi Zhao, Hui Liu, Rong Ma, Yue LI, Ruiben Li. Clinical characteristics of children with tic disorder complicated by respiratory tract infections and risk factors for tic symptom aggravation[J]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(06): 426-432.
[15] Wenfeng Zhao, Jianye Jia, Yi Zhang, Ming Xia, Yang Dong, Conghui Han, Sitong Jin, Jianbo Li, Zhigang Jia, Pengfei Liu, Changbao Xu, Yue Cheng. Current status of extracorporeal shock wave lithotripsy for managing upper urinary tract calculi in pediatric patients[J]. Chinese Journal of Clinicians(Electronic Edition), 2025, 19(04): 243-247.
Viewed
Full text


Abstract