[1] |
Rashka C, Hergalant S, Dreumont N, et al. Analysis of fibroblasts from patients with cblC and cblG genetic defects of cobalamin metabolism reveals global dysregulation of alternative splicing[J]. Hum Mol Genet, 2020, 29(12): 1969-1985. DOI: 10.1093/hmg/ddaa027.
|
[2] |
Liu J, Peng Y, Zhou N, et al. Combined methylmalonic acidemia and homocysteinemia presenting predominantly with late-onset diffuse lung disease: a case series of four patients[J]. Orphanet J Rare Dis, 2017, 12(1): 58. DOI: 10.1186/s13023-017-0610-8.
|
[3] |
Wongkittichote P, Cunningham G, Summar ML, et al. Tricarboxylic acid cycle enzyme activities in a mouse model of methylmalonic aciduria[J]. Mol Genet Metab, 2019, 128(4): 444-451. DOI: 10.1016/j.ymgme.2019.10.007.
|
[4] |
Ripp C, Loth J, Petrova I, et al. Drosophila Ror is a nervous system-specific co-receptor for Wnt ligands[J]. Biol Open, 2018, 7(11): bio033001. DOI: 10.1242/bio.033001.
|
[5] |
Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985-999. DOI: 10.1016/j.cell.2017.05.016.
|
[6] |
Perugorria MJ, Olaizola P, Labiano I, et al. Wnt-β-catenin signalling in liver development, health and disease[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(2): 121-136. DOI: 10.1038/s41575-018-0075-9.
|
[7] |
韩连书,黄倬,叶军,等. 甲基丙二酰辅酶A变位酶基因新错义突变功能研究[C]//第十四次全国医学遗传学学术会议论文集,南宁,2015. 北京:中国遗传学会人类与医学遗传专业委员会,2015: 97.
|
[8] |
|
[9] |
顾学范.临床遗传代谢病[M]. 北京:人民卫生出版社,2015: 106-107.
|
[10] |
Zhou W, Li H, Wang C, et al. Newborn screening for methylmalonic acidemia in a Chinese population: molecular genetic confirmation and genotype phenotype correlations[J]. Front Genet, 2019, 9: 726. DOI: 10.3389/fgene.2018.00726.
|
[11] |
Ktena YP, Ramstad T, Baker EH, et al. Propofol administration in patients with methylmalonic acidemia and intracellular cobalamin metabolism disorders: a review of theoretical concerns and clinical experiences in 28 patients[J]. J Inherit Metab Dis, 2015, 38(5): 847-853. DOI: 10.1007/s10545-015-9816-x.
|
[12] |
|
[13] |
Schunk SJ, Floege J, Fliser D, et al. WNT-β-catenin signalling - a versatile player in kidney injury and repair[J]. Nat Rev Nephrol, 2021, 17(3): 172-184. DOI: 10.1038/s41581-020-00343-w.
|
[14] |
Anthony CC, Robbins DJ, Ahmed Y, et al. Nuclear regulation of Wnt/β-catenin signaling: it′s a complex situation[J]. Genes (Basel), 2020, 11(8): 886. DOI: 10.3390/genes11080886.
|
[15] |
Wang C, Li D, Cai F, et al. Mutation spectrum of MMACHC in Chinese pediatric patients with cobalamin C disease: a case series and literature review[J]. Eur J Med Genet, 2019, 62(10): 103713. DOI: 10.1016/j.ejmg.2019.103713.
|
[16] |
Mascarenhas R, Li Z, Gherasim C, et al. The human B12 trafficking protein CblC processes nitrocobalamin[J]. J Biol Chem, 2020, 295(28): 9630-9640. DOI: 10.1074/jbc.RA120.014094.
|
[17] |
|
[18] |
Fernando WMADB, Martins IJ, Morici M, et al. Sodium butyrate reduces brain amyloid-β levels and improves cognitive memory performance in an Alzheimer′s disease transgenic mouse model at an early disease stage[J]. J Alzheimers Dis, 2020, 74(1): 91-99. DOI: 10.3233/JAD-190120.
|
[19] |
Chen CS, Tseng YT, Hsu YY, et al. Nrf2-Keap1 antioxidant defense and cell survival signaling are upregulated by 17β-estradiol in homocysteine-treated dopaminergic SH-SY5Y cells[J]. Neuroendocrinology, 2013, 97(3): 232-241. DOI: 10.1159/000342692.
|
[20] |
Yu L, Chen Y, Wang W, et al. Multi-vitamin B supplementation reverses hypoxia-induced tau hyperphosphorylation and improves memory function in adult mice[J]. J Alzheimers Dis, 2016, 54(1): 297-306. DOI: 10.3233/JAD-160329.
|
[21] |
|