Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2022, Vol. 18 ›› Issue (05): 512 -516. doi: 10.3877/cma.j.issn.1673-5250.2022.05.003

Forum

Research progress on circular RNA in pathogenesis of cervical cancer

Yimiao Wei, Yaqin Li, Weihong Zhao()   

  1. Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2022-01-30 Revised:2022-09-06 Published:2022-10-01
  • Corresponding author: Weihong Zhao
  • Supported by:
    National Natural Science Foundation of China(81702583); China Postdoctoral Science Foundation Project(2019M651072); Applied Basic Research Program of Shanxi Province(201901D211506)

Cervical cancer is one of the most common gynecological malignancies, and its morbidity and mortality both rank fourth in the world. It is now clear that the occurrence and development of cervical cancer are related to persistent infection with high risk-human papillomavirus (HR-HPV). Circular RNA (circRNA) is a new type of endogenous non-coding RNA (ncRNA), compared with other types of RNA, the three main characteristics of circRNA are evolutionary conservation, structural stability and tissue specificity. Different kinds of circRNA are abnormally expressed in cervical cancer and can participate in proliferation, migration and invasion of cervical cancer cells by regulating their corresponding binding elements, thereby playing an important role in the occurrence and development of cervical cancer. In this paper, the biological functions of circRNA and latest researches on its role of cervical cancer pathogenesis are reviewed, so as to provide a new target for the diagnosis and treatment of cervical cancer.

[1]
Hoque MR, Haque E, Karim MR. Cervical cancer in low-income countries: a Bangladeshi perspective[J].Int J Gynaecol Obstet, 2021, 152(1): 19-25. DOI:10.1002/ijgo.13400.
[2]
Wang R, Pan W, Jin L, et al. Human papillomavirus vaccine against cervical cancer: opportunity and challenge[J].Cancer Lett, 2020, 471: 88-102. DOI: 10.1016/j.canlet.2019.11.039.
[3]
Chen L, Wang C, Sun H, et al. The bioinformatics toolbox for circRNA discovery and analysis[J]. Brief Bioinform, 2021, 22(2): 1706-1728. DOI: 10.1093/bib/bbaa001.
[4]
Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs[J]. Mol Cell, 2018, 71(3): 428-442. DOI: 10.1016/j.molcel.2018.06.034.
[5]
Tran AM, Chalbatani GM, Berland L, et al. A new world of biomarkers and therapeutics for female reproductive system and breast cancers: circular RNAs[J]. Front Cell Dev Biol, 2020, 8: 50. DOI:10.3389/fcell.2020.00050.
[6]
Huang J, Zhou Q, Li Y. Circular RNAs in gynecological disease: promising biomarkers and diagnostic targets[J]. Biosci Rep, 2019, 39(5): BSR20181641. DOI: 10.1042/BSR20181641.
[7]
Xu S, Zhou L, Ponnusamy M, et al. A comprehensive review of circRNA: from purification and identification to disease marker potential[J]. Peer J, 2018, 6: e5503. DOI: 10.7717/peerj.5503.
[8]
Tang X, Ren H, Guo M, et al. Review on circular RNAs and new insights into their roles in cancer[J]. Comput Struct Biotechnol J, 2021, 19: 910-928. DOI: 10.1016/j.csbj.2021.01.018.
[9]
Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 475-490. DOI: 10.1038/s41580-020-0243-y.
[10]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. DOI: 10.1038/nature11993.
[11]
Panda AC. Circular RNAs act as miRNA sponges[J]. Adv Exp Med Biol, 2018, 1087: 67-79. DOI: 10.1007/978-981-13-1426-1_6.
[12]
Chen L, Zhang S, Wu J, et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family[J]. Oncogene, 2017, 36(32): 4551-4561. DOI: 10.1038/onc.2017.89.
[13]
Chen J, Yang J, Fei X, et al. CircRNA ciRS-7: a novel oncogene in multiple cancers[J]. Int J Biol Sci, 2021, 17(1): 379-389. DOI: 10.7150/ijbs.54292.
[14]
Li H, Lan M, Liao X, et al. Circular RNA cir-ITCH promotes osteosarcoma migration and invasion through cir-ITCH/miR-7/EGFR pathway[J]. Technol Cancer Res Treat, 2020, 19: 1533033819898728. DOI: 10.1177/1533033819898728.
[15]
Yang CD, Yuan WB, Yang X, et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression[J]. Mol Cancer, 2018, 17(1): 19. DOI: 10.1186/s12943-018-0771-7.
[16]
Patop IL, Wust S, Kadener S, et al. Past, present, and future of circRNAs[J]. EMBO J, 2019, 38(16): e100836. DOI: 10.15252/embj.2018100836.
[17]
Chen Y, Lin Y, Shu Y, et al. Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer[J]. Mol Cancer, 2020, 19(1): 94. DOI: 10.1186/s12943-020-01207-4.
[18]
Legnini I, Di Timoteo G, Rossi F, et al.Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Mol Cell, 2017, 66(1): 22-37. DOI: 10.1016/j.molcel.2017.02.017.
[19]
Yang Y, Gao X, Zhang M, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis[J]. J Natl Cancer Inst, 2018, 110(3): 304-315. DOI: 10.1093/jnci/djx166.
[20]
Zhang M, Huang N, Yang X, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis[J].Oncogene, 2018, 37(13): 1805-1814. DOI: 10.1038/s41388-017-0019-9.
[21]
Lei M, Zheng G, Ning Q, et al. Translation and functional roles of circular RNAs in human cancer[J]. Mol Cancer, 2020, 19(1): 30. DOI: 10.1186/s12943-020-1135-7.
[22]
Chaichian S, Shafabakhsh R, Mirhashemi SM, et al. Circular RNAs: a novel biomarker for cervical cancer[J]. J Cell Physiol, 2020, 235(2): 718-724. DOI: 10.1002/jcp.29009.
[23]
Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function[J]. J Neurosci Res, 2020, 98(1): 87-97. DOI: 10.1002/jnr.24356.
[24]
Salzman J. Circular RNA expression: its potential regulation and function[J]. Trends Genet, 2016, 32(5): 309-316. DOI: 10.1016/j.tig.2016.03.002.
[25]
Li Y, Ge YZ, Xu L, et al. Circular RNA ITCH: a novel tumor suppressor in multiple cancers[J]. Life Sci, 2020, 254: 117176. DOI: 10.1016/j.lfs.2019.117176.
[26]
Tornesello ML, Faraonio R, Buonaguro L, et al. The role of microRNAs, long non-coding RNAs, and circular RNAs in cervical cancer[J]. Front Oncol, 2020, 10: 150. DOI: 10.3389/fonc.2020.00150.
[27]
Yeo-teh NSL, Ito Y, Jha S. High-risk human papillomaviral oncogenes E6 and E7 target key cellular pathways to achieve oncogenesis[J]. Int J Mol Sci, 2018, 19(6): 1706. DOI: 10.3390/ijms19061706.
[28]
Zheng SR, Zhang HR, Zhang ZF, et al. Human papillomavirus 16 E7 on coprotein alters the expression profiles of circular RNAs in Caski cells[J]. J Cancer, 2018, 9(20): 3755-3764. DOI: 10.7150/jca.24253.
[29]
Yu L, Zheng ZM. Human papillomavirus type 16 circular RNA is barely detectable for the claimed biological activity[J]. mBio, 2022, 13(1): e0359421. DOI: 10.1128/mbio.03594-21.
[30]
Zhao J, Lee EE, Kim J, et al.Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus[J]. Nature Communications, 2019, 10(1): 2300. DOI: 10.1038/s41467-019-10246-5.
[31]
Jiao J, Zhang T, Jiao X, et al. Hsa_circ_0000745 promotes cervical cancer by increasing cell proliferation, migration, and invasion[J]. J Cell Physiol, 2020, 235(2): 1287-1295. DOI: 10.1002/jcp.29045.
[32]
Kourtidis A, Lu R, Pence LJ, et al. A central role for cadherin signaling in cancer[J]. Exp Cell Res, 2017, 358(1): 78-85. DOI: 10.1016/j.yexcr.2017.04.006.
[33]
Daulagala AC, Bridges MC, Kourtidis A. E-cadherin beyond structure: a signaling hub in colon homeostasis and disease[J]. Int J Mol Sci, 2019, 20(11): 2756. DOI: 10.3390/ijms20112756.
[34]
Ma L, Yang R, Gu J, et al. The expression of AGGF1, FOXC2, and E-cadherin in esophageal carcinoma and their clinical significance[J]. Medicine (Baltimore), 2020, 99(37): e22173. DOI: 10.1097/MD.0000000000022173.
[35]
He J, Lyu X, Zeng Z. A potential disease monitoring and prognostic biomarker in cervical cancer patients: the clinical application of circular RNA_0018289[J]. J Clin Lab Anal, 2020, 34(8): e23340. DOI: 10.1002/jcla.23340.
[36]
Gao YL, Zhang MY, Xu B, et al. Circular RNA expression profiles reveal that hsa_circ_0018289 is up-regulated in cervical cancer and promotes the tumorigenesis[J]. Oncotarget, 2017, 8(49): 86625-86633. DOI: 10.18632/oncotarget.21257.
[37]
Wang J, Li H, Liang Z. circ-MYBL2 serves as a sponge for miR-361-3p promoting cervical cancer cells proliferation and invasion[J]. Onco Targets Ther, 2019, 12: 9957-9964. DOI: 10.2147/OTT.S218976.
[38]
Wang Y, Wang L, Wang W,et al.Overexpression of circular RNA hsa_circ_0001038 promotes cervical cancer cell progression by acting as a ceRNA for miR-337-3p to regulate cyclin-M3 and metastasis-associated in colon cancer 1 expression[J]. Gene, 2020, 733: 144273. DOI: 10.1016/j.gene.2019.144273.
[39]
Ma H, Tian T, Liu X, et al. Upregulated circ_0005576 facilitates cervical cancer progression via the miR-153/KIF20A axis[J]. Biomed Pharmacother, 2019, 118: 109311. DOI: 10.1016/j.biopha.2019.109311.
[1] Jiechun Shi, Ziyu Fan, Yan Xing. Early warning efficiency of different screening methods on cervical adenocarcinoma in situ[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 575-581.
[2] Weicong Gao, Li Li, Zhonghua Zhang, Xianghui Zhu, Suqiao Liu. Impact of impaired glucose regulation on recurrence within 2 years after modified radical surgery in patients with cervical cancer[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(02): 231-237.
[3] Yufan Meng, Yongzheng Li, Zhiyao Fan, Hanxiang Zhan. Mechanism and research progress in intratumoral microbiota in the pathogenesis and progression of pancreatic cancer[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(04): 577-582.
[4] Jing Zhao, Jiaxin Zhang, Yan Gao, Xisheng Xie. Progress of research on minimal change disease in its pathogenesis and treatment[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(04): 207-212.
[5] Ding Sun, Bin Wang, Xiangmei Chen, Yizhi Chen. Progress in the study of heat stress nephropathy[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(03): 170-176.
[6] Hongyan Jia, Dan Wang, Ranran Zhang, Qian Ma, Yonghong Jiao. Genetic analysis on the pathogenesis of Möbius syndrome based on whole exome sequencing[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(03): 146-154.
[7] Yanan An, Duanran Wang, Tiantian Guo, Xirun Wu. Research progress of Helicobacter pylori negative gastric mucosa-associated lymphoid tissue lymphoma[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2024, 14(03): 268-274.
[8] Qi Liu, Shoukai Wang, Shuai Wang, Yuqing Su, Zhuang Ma, Haijun Chen, Pilei Si. Advances in research of intratumoral microbiome in breast cancer[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(09): 841-845.
[9] Xuefen Chen, Hongyu Wei, Qixiang Sun, Hua Zhao, Ping Yan, Chen Gong. Progress in diagnosis and treatment of hepatoid adenocarcinoma of the lung[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(01): 83-86.
[10] Pu Li, Xiujie Sheng. Management of pregnancy complicated with cervical cancer[J]. Chinese Journal of Obstetric Emergency(Electronic Edition), 2024, 13(04): 202-208.
[11] Ruonan Li, Jin Song, Yuzhong Wang. Progress on the pathogenesis and diagnosis and treatment of postherpetic neuralgia[J]. Chinese Journal of Diagnostics(Electronic Edition), 2024, 12(03): 199-205.
[12] Hongmin Chang, Guoqiang Zhu, Chuanbao Li. Research progress on the biological functions and related diseases mediated by the Eph/Ephrin signal transduction pathways[J]. Chinese Journal of Diagnostics(Electronic Edition), 2024, 12(01): 64-68.
[13] Kehan Wang, Tao Xu, Quanhong Zhou. Research progress on perioperative delirium and stress[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2024, 11(03): 45-49.
[14] Yuanxin Lu, Lilin Gong, Menghua Zeng. Research progress in the relationship between obesity and non-alcoholic fatty liver disease[J]. Chinese Journal of Obesity and Metabolic Diseases(Electronic Edition), 2024, 10(02): 113-119.
[15] Yue Yu, Yuan Wang, Muhui Sang, Qin Shi. Analysis of vertigo pathogenesis syndrome element distribution using a vertigo syndrome differentiation scale[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(05): 454-458.
Viewed
Full text


Abstract