Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2022, Vol. 18 ›› Issue (04): 373 -378. doi: 10.3877/cma.j.issn.1673-5250.2022.04.001

Editorial

Assessment of cardiovascular diseases in children by cardiac magnetic resonance

Hang Fu, Yingkun Guo()   

  1. Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2022-01-09 Revised:2022-07-11 Published:2022-08-01
  • Corresponding author: Yingkun Guo
  • Supported by:
    National Natural Science Foundation of China(81901712, 81771887); Clinical Research Funding of Chinese Society of Cardiology (CSC)(HFCSC2019B01)

Cardiovascular diseases (CVD) in children would cause pathophysiological disorders in cardiac structure, hemodynamics, function and myocardial tissue. Accurate assessment of these disorders is of great importance for treatment decision making, therapeutic efficacy evaluation and long-term follow-up for CVD. Based on cardiac magnetic resonance (CMR)′s advantages of high soft tissue resolution, without ionizing radiation and one-stop imaging of anatomical structure, function and myocardial tissue, CMR has become an important examination modality for children with CVD. The spin-echo pulse sequence, fast-suppressed-3D-true fast imaging with steady-state precession sequence of CMR and contrast-enhanced magnetic resonance angiography (MRA) showed good visualization of the morphology, size, interconnections of atrium, ventricles and large vessels. Phase contrast (PC) and 4D-flow of CMR can measure blood flow velocity and volume quantitatively, evaluate hemodynamic accurately, including analyze cardiac stroke volume, pulmonary blood flow/systemic blood flow, valvular reverse flow, and pressure gradient. Cine sequence of CMR can assess cardiac systolic and diastolic functions accurately. Combined with feature tissue tracking, cine sequence of CMR can also be used to early assess subclinical cardiac dysfunction by evaluating myocardial deformation. Furthermore, coronary microcirculation, myocardial fibrosis and edema can be detected quantitatively with first-pass perfusion imaging, late gadolinium enhancement (LGE), T1-mapping and T2-mapping of CMR , which could provide clinical information related to etiology, pathophysiology and prognosis for improving clinical management of children with CVD. Herein, the author intends to expound the value of CMR in diagnosis and treatment of children with CVD.

[14]
Siegel B, Olivieri L, Gordish-Dressman H, et al. Myocardial strain using cardiac MR feature tracking and speckle tracking echocardiography in duchenne muscular dystrophy patients[J]. Pediatr Cardiol, 2018, 39(3): 478-483. DOI: 10.1007/s00246-017-1777-4.
[15]
Callegari A, Marcora S, Burkhardt B, et al. Myocardial deformation in Fontan patients asssessed by cardiac magnetic resonance feature tracking: correlation with function, clinical course, and biomarkers[J]. Pediatr Cardiol, 2021, 42(7): 1625-1634. DOI: 10.1007/s00246-021-02650-w.
[16]
Biko DM, Collins RT, Partington SL, et al. Magnetic resonance myocardial perfusion imaging: safety and indications in pediatrics and young adults[J]. Pediatr Cardiol, 2018, 39(2): 275-282. DOI: 10.1007/s00246-017-1752-0.
[17]
Scannell CM, Hasaneen H, Greil G, et al. Automated quantitative stress perfusion cardiac magnetic resonance in pediatric patients[J]. Front Pediatr, 2021, 9: 699497. DOI: 10.3389/fped.2021.699497.
[18]
Fares M, Critser PJ, Arruda MJ, et al. Pharmacologic stress cardiovascular magnetic resonance in the pediatric population: a review of the literature, proposed protocol, and two examples in patients with Kawasaki disease[J]. Congenit Heart Dis, 2019, 14(6): 1166-1175. DOI: 10.1111/chd.12840.
[19]
Etesami M, Gilkeson RC, Rajiah P. Utility of late gadolinium enhancement in pediatric cardiac MRI[J]. Pediatr Radiol, 2016, 46(8): 1096-113. DOI: 10.1007/s00247-015-3526-2.
[20]
Martins DS, Ait-Ali L, Khraiche D, et al. Evolution of acute myocarditis in a pediatric population: an MRI based study[J]. Int J Cardiol, 2021, 329: 226-233. DOI: 10.1016/j.ijcard.2020.12.052.
[21]
Silva MC, Magalhães TA, Meira ZM, et al. Myocardial fibrosis progression in Duchenne and Becker Muscular Dystrophy: a randomized clinical trial[J]. JAMA Cardiol, 2017, 2(2): 190-199. DOI: 10.1001/jamacardio.2016.4801.
[22]
Andrade Gomes HJ, de Padua Vieira Alves V, Nacif MS. The value of T1 mapping techniques in the assessment of myocardial interstitial fibrosis[J]. Magn Reson Imaging Clin N Am, 2019, 27(3): 563-574. DOI: 10.1016/j.mric.2019.04.007.
[23]
Riesenkampff E, Messroghli DR, Redington AN, et al. Myocardial T1 mapping in pediatric and congenital heart disease[J]. Circ Cardiovasc Imaging, 2015, 8(2): e002504. DOI: 10.1161/CIRCIMAGING.114.002504.
[24]
Yim D, Riesenkampff E, Caro-Dominguez P, et al. Assessment of diffuse ventricular myocardial fibrosis using native T1 in children with repaired tetralogy of Fallot[J]. Circ Cardiovasc Imaging, 2017, 10(3): e005695. DOI: 10.1161/CIRCIMAGING.116.005695.
[25]
Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert Recommendations[J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072.
[26]
Jia H, Guo J, Liu B, et al. Diagnostic value of 3.0 T cardiac MRI in children with suspected myocarditis: multi-parameter analysis for the evaluation of acute and chronic myocarditis[J]. Acta Radiol, 2020, 61(9): 1249-1257. DOI: 10.1177/0284185119900434.
[27]
Cornicelli MD, Rigsby CK, Rychlik K, et al. Diagnostic performance of cardiovascular magnetic resonance native T1 and T2 mapping in pediatric patients with acute myocarditis[J]. J Cardiovasc Magn Reson, 2019, 15, 21(1): 40. DOI: 10.1186/s12968-019-0550-7.
[28]
Sethi N, Doshi A, Doshi T, et al. Quantitative cardiac magnetic resonance T2 imaging offers ability to non-invasively predict acute allograft rejection in children[J]. Cardiol Young, 2020, 30(6): 852-859. DOI: 10.1017/S104795112000116X.
[29]
Yuan SM. Cardiomyopathy in the pediatric patients[J]. Pediatr Neonatol, 2018, 59(2): 120-128. DOI: 10.1016/j.pedneo.2017.05.003.
[30]
Bunck AC, Baeßler B, Ritter C, et al. Structured reporting in cross-sectional imaging of the heart: reporting templates for CMR imaging of cardiomyopathies (myocarditis, dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and siderosis)[J]. Rofo, 2020, 192(1): 27-37. DOI: 10.1055/a-0998-4116.
[31]
Chow EJ, Leger KJ, Bhatt NS, et al. Paediatric cardio-oncology: epidemiology, screening, prevention, and treatment[J]. Cardiovasc Res, 2019, 115(5): 922-934. DOI: 10.1093/cvr/cvz031.
[32]
Blondiaux E, Parisot P, Redheuil A, et al. Cardiac MRI in children with multisystem inflammatory syndrome associated with COVID-19[J]. Radiology, 2020, 297(3): E283-E288. DOI: 10.1148/radiol.2020202288.
[33]
Power LC, O′Grady GL, Hornung TS, et al. Imaging the heart to detect cardiomyopathy in Duchenne muscular dystrophy: a review[J]. Neuromuscul Disord, 2018, 28(9): 717-730. DOI: 10.1016/j.nmd.2018.05.011.
[34]
Schäfer M, Nadeau KJ, Reusch JEB. Cardiovascular disease in young people with type 1 diabetes: search for cardiovascular biomarkers[J]. J Diabetes Complications, 2020, 34(10): 107651. DOI: 10.1016/j.jdiacomp.2020.107651.
[35]
Zou Q, Xu HY, Fu C, et al. Utility of single-shot compressed sensing cardiac magnetic resonance cine imaging for assessment of biventricular function in free-breathing and arrhythmic pediatric patients[J]. Int J Cardiol, 2021, 338: 258-264. DOI: 10.1016/j.ijcard.2021.06.043.
[36]
Nguyen KL, Ghosh RM, Griffin LM, et al. Four-dimensional multiphase steady-state MRI with ferumoxytol enhancement: early multicenter feasibility in pediatric congenital heart disease[J]. Radiology, 2021, 300(1): 162-173. DOI: 10.1148/radiol.2021203696.
[37]
Kim B, Loke YH, Mass P, et al. A novel virtual reality medical image display system for group discussions of congenital heart disease: development and usability testing[J]. JMIR Cardio, 2020, 4(1): e20633. DOI: 10.2196/20633.
[1]
Bonnemains L, Raimondi F, Odille F. Specifics of cardiac magnetic resonance imaging in children[J]. Arch Cardiovasc Dis, 2016, 109(2): 143-149. DOI: 10.1016/j.acvd.2015.11.004.
[2]
Valsangiacomo Buechel ER, Grosse-Wortmann L, Fratz S, et al. Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI[J]. Eur Heart J Cardiovasc Imaging, 2015, 16(3): 281-297. DOI: 10.1093/ehjci/jeu129.
[3]
Valverde I, Tangcharoen T, Hussain T, et al. Magnetic resonance imaging planning in children with complex congenital heart disease - a new approach[J]. JRSM Cardiovasc Dis, 2017, 6: 2048004017701870. DOI: 10.1177/2048004017701870.
[4]
Albrecht MH, Varga-Szemes A, Schoepf UJ, et al. Diagnostic accuracy of non-contrast self-navigated free-breathing MR angiography versus CT angiography: a prospective study in pediatric patients with suspected anomalous coronary arteries[J]. Acad Radiol. 2019, 26(10): 1309-1317. DOI: 10.1016/j.acra.2018.12.010.
[5]
王静蕾,孙爱敏,王谦,等. 3D SSFP成像技术在先天性心脏病Fontan术后中的应用[J]. 中国医疗设备2019, 34(6): 97-99, 113. DOI: 10.3969/j.issn.1674-1633.2019.06.026.
[6]
Han BK, Rigsby CK, Hlavacek A, et al. Computed tomography imaging in patients with congenital heart disease part Ⅰ:rationale and utility. an expert consensus document of the society of cardiovascular computed tomography (SCCT): endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging(NASCI)[J]. J Cardiovasc Comput Tomogr, 2015, 9(6): 475-492. DOI: 10.1016/j.jcct.2015.07.004.
[7]
胡立伟,钟玉敏,刘金龙,等. 基于儿童心脏磁共振的Glenn术后血流动力学应用研究[J].中国医学计算机成像杂志2018, 24(3): 195-199. DOI: 10.19627/j.cnki.cn31-1700/th.2018.03.003.
[8]
Geiger J, Callaghan FM, Burkhardt BEU, et al. Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children[J]. Pediatr Radiol, 2021, 51(8): 1503-1517. DOI: 10.1007/s00247-020-04885-w.
[9]
Rose MJ, Rigsby CK, Berhane H, et al. 4-D flow MRI aortic 3-D hemodynamics and wall shear stress remain stable over short-term follow-up in pediatric and young adult patients with bicuspid aortic valve[J]. Pediatr Radiol, 2019, 49(1): 57-67. DOI: 10.1007/s00247-018-4257-y.
[10]
van der Palen RLF, Deurvorst QS, Kroft LJM, et al. Altered ascending aorta hemodynamics in patients after arterial switch operation for transposition of the great arteries[J]. J Magn Reson Imaging, 2020, 51(4): 1105-1116. DOI: 10.1002/jmri.26934.
[11]
van der Ven JPG, Sadighy Z, Valsangiacomo Buechel ER, et al. Multi-centre reference values for cardiac magnetic resonance imaging derived ventricular size and function for children aged 0-18 years[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(1): 102-113. DOI: 10.1093/ehjci/jez164.
[12]
Muthurangu V. Cardiovascular magnetic resonance in congenital heart disease: focus on heart failure[J]. Heart Fail Clin, 2021, 17(1): 157-165. DOI: 10.1016/j.hfc.2020.08.012.
[13]
Writing Group, Sachdeva R, Valente AM, et al. ACC/AHA/ASE/HRS/ISACHD/SCAI/SCCT/SCMR/SOPE 2020 appropriate use criteria for multimodality imaging during the follow-up care of patients with congenital heart disease: a report of the American College of Cardiology Solution set oversight committee and appropriate use criteria task force, American Heart Association, American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Pediatric Echocardiography[J]. J Am Soc Echocardiogr, 2020, 33(10): e1-e48. DOI: 10.1016/j.echo.2020.04.026.
[1] Hongyu Tao, Jingjing Ye, Jin Yu, Xiuzhen Yang, Jingjing Qian, Bin Xu, Weize Xu, Qiang Shu. Value of contrast transthoracic echocardiography in assessing right-to-left shunt-related diseases in children[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(10): 959-965.
[2] Wenjia Cao, Xuebing Liu, Anguo Luo, Shimin Zhong, Lan Deng, Yulin Wang, Zhaohuan Li. Evaluation of wall shear stress of the carotid artery by ultrasound vector flow imaging in patients with type 2 diabetes mellitus[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(07): 709-717.
[3] Xiaoling Chen, Yonglie Zhong, Qiaoli Liu, Na Li, Zhiqi Zhang, Weiming Liao, Guiwu Huang. Risk prediction of delirium and cardiovascular complications after hip and knee surgeries in elderly patients[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(05): 575-584.
[4] Xiaofei Li, Hongli Liu, Qiuling Shi, Jing Tian, Li Li, Hongbo Qi, Xin Luo. A prospective randomized controlled study of low intensity focused ultrasound uterine involution treatment for prevention and treatment of postpartum hemorrhage in natural childbirth women[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 534-539.
[5] Qin Liu, Hanmin Liu, Liang Xie. Current status of research on the role of matrix metalloproteinases in the pathogenesis of childhood asthma[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 564-568.
[6] Yun Xiang, You Lu, Fan Yang. Current research status of correlation between per-and polyfluoroalkyl substances exposure and childhood obesity[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(05): 569-574.
[7] Mengsi Zhang, Yiqun Ma, Lijuan Meng, Hui Zhu, Jinfeng Fu. Observation on the effect of the combined use of pressure gloves, webbed finger compression straps and foam silicone gel sheeting after surgery in children with cicatricial syndactyly[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(04): 329-334.
[8] Xiaoli Yang, Wanfu Li, Zhu Ma, Lan Ma, Yi Zheng, Xiaoli Fu, Jing Wang. Application effect of one-step forceps needle method in laparoscopic high ligation of hernia sac in children[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2024, 18(05): 535-538.
[9] Hebei Ding, Xun Wang, Weiguo Chen. Comparison of application of sevoflurane inhalation anesthesia and propofol intravenous anesthesia in pediatric indirect inguinal hernia surgery[J]. Chinese Journal of Hernia and Abdominal Wall Surgery(Electronic Edition), 2024, 18(05): 570-574.
[10] Chinese Society of Organ Transplantation of Chinese Medical Association, Surgery Group of Chinese Society of Surgery of Chinese Medical Association, Transplantation Group of Chinese Society of Surgery of Chinese Medical Association, South China Alliance of Split Liver Transplantation. Chinese Clinical Practice Guidelines on Split Liver Transplantation in Children[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(05): 593-601.
[11] Jun Liu, Wenjing Qiu, Fanghao Sun, Songying Li, Shuhong Yi, Binsheng Fu, Yang Yang, Hui Luo. Comparison of in vivo and in vitro split liver transplantation in pediatric liver transplantation[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(05): 688-693.
[12] Jiachen Zhang, Hongxin Song. The correlation between the changes of spherical equivalent and myopia progression in children with refractive error[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(04): 217-222.
[13] Chen Zhang, Ming Qin, Juan Dong, Yulong Chen. Diagnostic value of ultrasound in ischemic changes of intestinal volvulus in children[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2024, 14(06): 565-568.
[14] Xiaosheng Chen, Jia He, Fang Liu, Rui Wu, Haitao Yang, Xiaohan Fan. Pacemaker implantation in a child with a 31-second cardiac arrest induced by tilt table test: a case report and literature review[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(05): 488-494.
[15] Yali Cao, Yumeng Gao, Yingqian Zhang, Bo Li, Junbao Du, Hongfang Jin. Clinical progress of sitting intolerance in children[J]. Chinese Journal of Cerebrovascular Diseases(Electronic Edition), 2024, 18(05): 510-515.
Viewed
Full text


Abstract