Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2022, Vol. 18 ›› Issue (02): 125 -131. doi: 10.3877/cma.j.issn.1673-5250.2022.02.001

Forum

Application and prospect of liquid biopsy in diagnosis and prognostic evaluation of neonatal brain injury

Shixi Liu, Yi Qu(), Junjie Ying, Dezhi Mu   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, West China Second University Hospital, Chengdu 610041, Sichuan Province, China
  • Received:2021-12-30 Revised:2022-03-21 Published:2022-04-01
  • Corresponding author: Yi Qu
  • Supported by:
    National Natural Science Foundation of China(81701500, 81771634, 81971428)

Liquid biopsies (LB), a technique using human body fluids to obtain disease information, has been widely carried out in multiple fields and made breakthrough progress, especially in tumor diagnosis and treatment. The application of LB has been developed in the diagnosis of neonatal brain injury, such as intracranial hemorrhage, neonatal hypoxic-ischemic brain damage (HIBD), and brain white matter injury in preterm infants. We intend to describe the latest research progresses of advantages and current application statuses of LB in diagnosis and prognosis evaluation of neonatal brain injury, in order to provide reference for clinical diagnosis and prognosis evaluation of neonatal brain injury.

表1 外泌体生物标志物与神经系统疾病诊断的关系
表2 目前临床用于新生儿脑损伤诊断中,主要涉及的相关游离血液生物标志物
[1]
Sorrells RB. Synovioanalysis (" liquid biopsy" )[J]. J Ark Med Soc, 1974, 71(1): 59-62.
[2]
Cheung AH, Chow C, To KF. Latest development of liquid biopsy[J]. J Thorac Dis, 2018, 10(Suppl 14): S1645-S1651. DOI: 10.21037/jtd.2018.04.68.
[3]
Graham EM, Burd I, Everett AD, et al. Blood biomarkers for evaluation of perinatal encephalopathy[J]. Front Pharmacol, 2016, 7: 196. DOI: 10.3389/fphar.2016.00196.
[4]
Massaro AN, Wu YW, Bammler TK, et al. Plasma biomarkers of brain injury in neonatal hypoxic-ischemic encephalopathy[J]. J Pediatr, 2018, 194: 67.e1-75.e1. DOI: 10.1016/j.jpeds.2017.10.060.
[5]
Lv H, Wang Q, Wu S, et al. Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid[J]. Clin Chim Acta, 2015, 450: 282-297. DOI: 10.1016/j.cca.2015.08.021.
[6]
Graham EM, Everett AD, Delpech JC, et al. Blood biomarkers for evaluation of perinatal encephalopathy: state of the art[J]. Curr Opin Pediatr, 2018, 30(2): 199-203. DOI: 10.1097/MOP.0000000000000591.
[7]
Chen Y, Song Y, Huang J, et al. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke[J]. Front Neurol, 2017, 8: 57. DOI: 10.3389/fneur.2017.00057.
[8]
陈小娜,姜毅. 2018昆士兰临床指南:缺氧缺血性脑病介绍[J]. 中华新生儿科杂志2019, 34(1): 77-78. DOI: 10.3760/cma.j.issn.2096-2932.2019.01.019.
[9]
Greco P, Nencini G, Piva I, et al. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future[J]. Acta Neurol Belg, 2020, 120(2): 277-288. DOI: 10.1007/s13760-020-01308-3.
[10]
Bano S, Chaudhary V, Garga UC. Neonatal hypoxic-ischemic encephalopathy: a radiological review[J]. J Pediatr Neurosci, 2017, 12(1): 1-6. DOI: 10.4103/1817-1745.205646.
[11]
Goetzl L, Merabova N, Darbinian N, et al. Diagnostic potential of neural exosome cargo as biomarkers for acute brain injury[J]. Ann Clin Transl Neurol, 2018, 5(1): 4-10. DOI: 10.1002/acn3.499.
[12]
Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J]. J Extracell Vesicles, 2016, 5(1): 32945. DOI: 10.3402/jev.v5.32945.
[13]
Graner MW, Epple LM, Dusto NL, et al. Circulating exosomes as new biomarkers for brain disease and injury[C]// Conference on sensing technologies for global health, military medicine, and environmental monitoring Ⅲ,2013. DOI: 10.1117/12.2027435.
[14]
Jia L, Qiu Q, Zhang H, et al. Concordance between the assessment of Abeta42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid[J]. Alzheimers Dement, 2019, 15(8): 1071-1080. DOI: 10.1016/j.jalz.2019.05.002.
[15]
Muller L, Hong CS, Stolz DB, et al. Isolation of biologically-active exosomes from human plasma[J]. J Immunol Methods, 2014, 411: 55-65. DOI: 10.1016/j.jim.2014.06.007.
[16]
Devoto C, Arcurio L, Fetta J, et al. Inflammation relates to chronic behavioral and neurological symptoms in military personnel with traumatic brain injuries[J]. Cell Transplant, 2017, 26(7): 1169-1177. DOI: 10.1177/0963689717714098.
[17]
Gurunathan S, Kang MH, Kim JH. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes[J]. Int J Nanomedicine, 2021, 16: 1281-1312. DOI: 10.2147/IJN.S291956.
[18]
Dinkins MB, Wang G, Bieberich E. Sphingolipid-enriched extracellular vesicles and Alzheimer′s disease: a decade of research[J]. J Alzheimers Dis, 2017, 60(3): 757-768. DOI: 10.3233/JAD-160567.
[19]
Kodidela S, Gerth K, Sinha N, et al. Circulatory astrocyte and neuronal EVs as potential biomarkers of neurological dysfunction in HIV-infected subjects and alcohol/tobacco users[J]. Diagnostics (Basel), 2020, 10(6): 349. DOI: 10.3390/diagnostics10060349.
[20]
Kawata K, Mitsuhashi M, Aldret R. A preliminary report on brain-derived extracellular vesicle as novel blood biomarkers for sport-related concussions[J]. Front Neurol, 2018, 9: 239. DOI: 10.3389/fneur.2018.00239.
[21]
Mondello S, Guedes VA, Lai C, et al. Circulating brain injury exosomal proteins following moderate-to-severe traumatic brain injury: temporal profile, outcome prediction and therapy implications[J]. Cells, 2020, 9(4): 977. DOI: 10.3390/cells9040977.
[22]
Galazka G, Mycko MP, Selmaj I, et al. Multiple sclerosis: serum-derived exosomes express myelin proteins[J]. Mult Scler, 2018, 24(4): 449-458. DOI: 10.1177/1352458517696597.
[23]
Kumar A, Stoica BA, Loane DJ, et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury[J]. J Neuroinflammation, 2017, 14(1): 47. DOI: 10.1186/s12974-017-0819-4.
[24]
Ji Q, Ji Y, Peng J, et al. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients[J]. PLoS One, 2016, 11(9): e0163645. DOI: 10.1371/journal.pone.0163645.
[25]
Li DB, Liu JL, Wang W, et al. Plasma exosomal miR-422a and miR-125b-2-3p serve as biomarkers for ischemic stroke[J]. Curr Neurovasc Res, 2017, 14(4): 330-337. DOI: 10.2174/1567202614666171005153434.
[26]
Wang W, Li DB, Li RY, et al. Diagnosis of hyperacute and acute ischaemic stroke: the potential utility of exosomal microRNA-21-5p and microRNA-30a-5p[J]. Cerebrovasc Dis, 2018, 45(5-6): 204-212. DOI: 10.1159/000488365.
[27]
Papa L, Ramia MM, Edwards D, et al. Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion[J]. J Neurotrauma, 2015, 32(10): 661-673. DOI: 10.1089/neu.2014.3655.
[28]
Maggiotto LV, Sondhi M, Shin BC, et al. Circulating blood cellular glucose transporters-surrogate biomarkers for neonatal hypoxic-ischemic encephalopathy assessed by novel scoring systems[J]. Mol Genet Metab, 2019, 127(2): 166-173. DOI: 10.1016/j.ymgme.2019.05.013.
[29]
Daverey A, Agrawal SK. Neuroprotective effects of riluzole and curcumin in human astrocytes and spinal cord white matter hypoxia[J]. Neurosci Lett, 2020, 738: 135351. DOI: 10.1016/j.neulet.2020.135351.
[30]
Beers SR, Berger RP, Adelson PD. Neurocognitive outcome and serum biomarkers in inflicted versus non-inflicted traumatic brain injury in young children[J]. J Neurotrauma, 2007, 24(1): 97-105. DOI: 10.1089/neu.2006.0055.
[31]
Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion[J]. Stroke, 2008, 39(3): 959-966. DOI: 10.1161/STROKEAHA.107.500736.
[32]
Douglas-Escobar MV, Heaton SC, Bennett J, et al. UCH-L1 and GFAP serum levels in neonates with hypoxic-ischemic encephalopathy: a single center pilot study[J]. Front Neurol, 2014, 5: 273. DOI: 10.3389/fneur.2014.00273.
[33]
Cho KHT, Wassink G, Galinsky R, et al. Protective effects of delayed intraventricular TLR7 agonist administration on cerebral white and gray matter following asphyxia in the preterm fetal sheep[J]. Sci Rep, 2019, 9(1): 9562. DOI: 10.1038/s41598-019-45872-y.
[34]
Papa L, Silvestri S, Brophy GM, et al. GFAP out-performs S100beta in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions[J]. J Neurotrauma, 2014, 31(22): 1815-1822. DOI: 10.1089/neu.2013.3245.
[35]
Ennen CS, Huisman TA, Savage WJ, et al. Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling[J]. Am J Obstet Gynecol, 2011, 205(3): 251.e1-251.e7. DOI: 10.1016/j.ajog.2011.06.025.
[36]
McMahon PJ, Panczykowski DM, Yue JK, et al. Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging[J]. J Neurotrauma, 2015, 32(8): 527-533. DOI: 10.1089/neu.2014.3635.
[37]
Rangon CM, Schang AL, Van Steenwinckel J, et al. Myelination induction by a histamine H3 receptor antagonist in a mouse model of preterm white matter injury[J]. Brain Behav Immun, 2018, 74: 265-276. DOI: 10.1016/j.bbi.2018.09.017.
[38]
Zhou W, Li W, Qu LH, et al. Relationship of plasma S100B and MBP with brain damage in preterm infants[J]. Int J Clin Exp Med, 2015, 8(9): 16445-16453.
[39]
Goetzl L, Darbinian N, Merabova N. Noninvasive assessment of fetal central nervous system insult: potential application to prenatal diagnosis[J]. Prenat Diagn, 2019, 39(8): 609-615. DOI: 10.1002/pd.5474.
[40]
Ma Q, Dasgupta C, Li Y, et al. Inhibition of microRNA-210 provides neuroprotection in hypoxic-ischemic brain injury in neonatal rats[J]. Neurobiol Dis, 2016, 89: 202-212. DOI: 10.1016/j.nbd.2016.02.011.
[41]
Laterza OF, Lim L, Garrett-Engele PW, et al. Plasma microRNAs as sensitive and specific biomarkers of tissue injury[J]. Clin Chem, 2009, 55(11): 1977-1983. DOI: 10.1373/clinchem.2009.131797.
[42]
Weng H, Shen C, Hirokawa G, et al. Plasma miR-124 as a biomarker for cerebral infarction[J]. Biomed Res, 2011, 32(2): 135-141. DOI: 10.2220/biomedres.32.135.
[43]
Sun Y, Luo ZM, Guo XM, et al. An updated role of microRNA-124 in central nervous system disorders: a review[J]. Front Cell Neurosci, 2015, 9: 193. DOI: 10.3389/fncel.2015.00193.
[44]
Huang SH, Wang L, Chi F, et al. Circulating brain microvascular endothelial cells (cBMECs) as potential biomarkers of the blood-brain barrier disorders caused by microbial and non-microbial factors[J]. PLoS One, 2013, 8(4): e62164. DOI: 10.1371/journal.pone.0062164.
[45]
李妍,杜蕾,袁霖,等. 外周血中血脑屏障损伤新型标记物脑微血管内皮细胞检测方法的建立[J]. 南方医科大学学报2014, 34(12): 1733-1737. DOI: 10.3969/j.issn.1673-4254.2014.12.05.
[46]
甘浪舸,李祥攀,阮林,等. 循环内皮细胞和放射性脑损伤的关系[J]. 中华肿瘤防治杂志2007, 14(5): 352-354. DOI: 10.3969/j.issn.1673-5269.2007.05.010.
[47]
Pourcyrous M, Basuroy S, Tcheranova D, et al. Brain-derived circulating endothelial cells in peripheral blood of newborn infants with seizures: a potential biomarker for cerebrovascular injury[J]. Physiol Rep, 2015, 3(3): e12345. DOI: 10.14814/phy2.12345.
[48]
Rainer TH, Wong LK, Lam W, et al. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke[J]. Clin Chem, 2003, 49(4): 562-569. DOI: 10.1373/49.4.562.
[49]
Regner A, Meirelles LDS, Ikuta N, et al. Prognostic utility of circulating nucleic acids in acute brain injuries[J]. Expert Rev Mol Diagn, 2018, 18(11): 925-938. DOI: 10.1080/14737159.2018.1535904.
[50]
Lehmann-Werman R, Neiman D, Zemmour H, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA[J]. Proc Natl Acad Sci USA, 2016, 113(13):1826-1834. DOI: 10.1073/pnas.1519286113.
[1] Yan Wang, Jianxiong Ma, Shuang Lang, Benchao Dong, Aixian Tian, Yan Li, Lei Sun, Hongzhen Jin, Bin Lu, Ying Wang, Haohao Bai, Xinlong Ma. Research progress in application of exosomes in diagnosis and treatment of osteoporosis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(05): 673-678.
[2] Zhidong Zhao, Zhongli Li. Research progress of early diagnosis and treatment in osteoarthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(05): 689-693.
[3] Jinglong He, Wei Sun, Minghong Gao, Wei Xie, Luogong Jiang, Qifei He, Jiaji Yue. Research progress of exosomal non-coding RNA in pathogenesis of osteoarthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(04): 520-527.
[4] Lei Gao, Fang Li, Bayaliga, Quan Li, Te Ba. Progress of immune role of stem cell-derived exosomes in wound repair[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(04): 364-367.
[5] Ruijuan Huang, Qi De, Te Ba, Biao Zhou. Influence of human umbilical cord mesenchymal stem cell exosomes on migration of heat-damaged human skin fibroblasts[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(03): 229-234.
[6] Zhiming Li, Chenming Guo, Xiaochen Zhuang, Xueqin Hou, Junxi Gao. Comparative study of qualitative and quantitative indicators of contrast-enhanced ultrasound in early breast cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(06): 639-643.
[7] Wenxin Ji, Mao Wang, Chunli Qiu, Shangpeng Li, Yinhai Dai. Expression and clinical significance of serum exosomes circ pvt1 and circ 0014606 in triple negative breast cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(03): 267-271.
[8] Shuangyin Lei, Jianxin Xi, Yuxuan He, Jingyi Yao, Boya Shi, Jie Ma, Guangfan Chi, Meiying Li. Applications and advances of mesenchymal stem cells-derived exosomes in treating neurodegenerative diseases[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(02): 93-100.
[9] Xinxiong Li, Zaizhong Zhang, Hu Zhao, Chunhong Xiao, Lie Wang. Progress of exosome contents as diagnostic markers for pancreatic cancer[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(01): 53-57.
[10] Chufeng Wang, An Jiang. Molecular diagnosis of primary liver cancer[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(05): 499-503.
[11] Ruiqi Gu, Hongsheng Fang, Guoxiang Cai. Application and progress of circulating tumor DNA detection technology in the diagnosis and treatment of colorectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2023, 12(06): 453-459.
[12] Yimin E, Sizheng Sun, Xiaoyu Fan, Chunzhao Yu. Present status and prospect of fecal screening for colorectal cancer[J]. Chinese Journal of Colorectal Diseases(Electronic Edition), 2023, 12(04): 331-336.
[13] Huifeng Zhang, Peng Zhang, Xiaowei Zhu, Hong Yu. Research progress on exosomal long non-coding RNAs in gastric cancer[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2023, 13(01): 46-49.
[14] Min Wang, Yan Zhang, Yingxi Wang, Long Zhao, Shuyue Xia. The roles of exosomes in chronic obstructive pulmonary disease[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2023, 11(01): 45-51.
[15] Lei Gao, Quan Li, Yaliga Ba, Qiang Chen, Zhihui Hou, Shengjun Cao, Te Ba. Effects of platelet exosomes on coagulation function in severe burn patients: a preliminary study[J]. Chinese Journal of Hygiene Rescue(Electronic Edition), 2023, 09(03): 149-154.
Viewed
Full text


Abstract