Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2021, Vol. 17 ›› Issue (06): 699 -708. doi: 10.3877/cma.j.issn.1673-5250.2021.06.012

Original Article

Values of serum presepsin (sCD14-ST) in diagnosis of neonatal sepsis: a Meta-analysis

Qiao Lin, Hua Wang()   

  • Received:2021-07-16 Revised:2021-10-10 Published:2021-12-01
  • Corresponding author: Hua Wang
  • Supported by:
    Applied Basic Research Project of Science and Technology Department of Sichuan Province(2021YJ0171)
Objective

To explore diagnostic values of serum soluble CD14 subtype (sCD14-ST, presepsin) in neonatal sepsis (NS) by Meta-analysis.

Methods

Prospective or retrospective case-control studies literature on diagnostic value of serum presepsin in NS in English databases such as PubMed and Web of Science, as well as Chinese databases such as CNKI and Wanfang database were searched by computer and Cochrane system evaluation method. Literature retrieval time was set from January 1990 to September 2020. According to retrieval strategies set in this study, researchers searched and screened literature and extracted data, and evaluated quality of literature by Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2), and then used Meta-Disc 1.4 and Stata 14.0 software for Meta-analysis. The main outcome indicators of serum presepsin in diagnosis of NS were combined sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR), summary receiver operating characteristics (SROC) curve and area under curve (AUC). Threshold effect was evaluated by distribution characteristics of SROC curve and Spearman correlation coefficient between sensitivity logarithm and (1-specificity) logarithm of serum presepsin in diagnosis of NS. Heterogeneity between studies was analyzed by Cochrane-Q test, and the source of heterogeneity was further explored by subgroup analysis. Publication bias was analyzed by Deek′s funnel plot.

Results

A total of 15 pieces of literature were finally included, and results of study on value of serum presepsin in diagnosis of NS were as follows. ①A total of 1 394 newborns from 6 countries were included with 812 cases of NS children in study group and 582 cases of non-NS children in control group. ②The 15 pieces of literature met the criteria of diagnostic accuracy quality evaluation of QUADAS-2 with acceptable bias risk and applicable NS diagnostic standard. ③Results of SROC curve of serum presepsin in diagnosis of NS in 15 pieces of included literature showed that SROC curve did not show a typical " shoulder-arm" distribution, and Spearman correlation coefficient between sensitivity logarithm and (1-specificity) logarithm of serum presepsin in diagnosis of NS was -0.020 (P=0.945), indicating that there was no threshold effect among 15 pieces of literature. The sensitivity, specificity, PLR, NLR and DOR value of serum presepsin in diagnosis of NS were highly heterogeneous (I2=81.0%, 75.8%, 67.2%, 76.3%, 68.7%; all P<0.001), suggesting that there was heterogeneity caused by non-threshold effect among 15 pieces of literature. So, random effect model was used for Meta-analysis. Combined sensitivity of serum presepsin in diagnosis of NS was 89% (95%CI: 87%-91%, P<0.001), combined specificity was 90% (95%CI: 88%-93%, P<0.001), combined PLR was 8.39 (95%CI: 5.18-13.60, P<0.001), combined NLR was 0.13 (95%CI: 0.09-0.21, P<0.001), and combined DOR value was 98.83 (95%CI: 43.21-226.07, P<0.001), SROC-AUC was 0.96 (95%CI: 0.95-0.98). Subgroup analysis showed that non-threshold effect heterogeneity among literature may be caused by serum presepsin detection method [enzyme-linked immunosorbent assay (ELISA) method: PLR of serum presepsin in diagnosis of NS was 12.10 (6.31-23.17), I2=42.9%, P=0.105, DOR value was 270.76 (84.62-866.32), I2=40.5%, P=0.121; chemiluminescence enzyme immunoassay (CLEIA) method: PLR was 5.80 (3.27-10.28), I2=65.9%, P=0.005, DOR value was 45.47 (17.5-118.15), I2=69.0%, P=0.002]. ④Deek′s funnel plot showed that 15 pieces of literature were basically symmetrically distributed on 2 sides of the regression line, and the difference was not statistically significant (P=0.640).

Conclusions

Diagnostic value of serum presepsin in NS is relatively high in 15 pieces of literature, and detection of serum presepsin by ELISA is more accurate and reliable in diagnosis of NS. Limited by the subjects and quality of included literature, the above conclusions need to be confirmed by more high-quality studies.

表1 本研究纳入文献的基本信息与血清presepsin检测方法及其NS诊断结果
图1 文献筛选流程及结果
图2 纳入研究文献的偏倚风险及适应性评估结果注:文献No.1~15依次为纳入研究文献[15]~[29]
图3 纳入15篇文献血清presepsin检测诊断NS的SROC曲线注:NS为新生儿败血症。SROC曲线为汇总受试者工作特征曲线
图4 纳入15篇文献血清presepsin检测诊断NS的敏感度的Meta分析注:文献No.1~15依次为纳入研究文献[15]~[29]。NS为新生儿败血症
图5 纳入15篇文献血清presepsin检测诊断NS的特异度的Meta分析注:文献No.1~15依次为纳入研究文献[15]~[29]。NS为新生儿败血症
图6 纳入15篇文献血清presepsin检测诊断NS的PLR的Meta分析注:文献No.1~15依次为纳入研究文献[15]~[29]。NS为新生儿败血症,PLR为阳性似然比
图7 纳入15篇文献血清presepsin检测诊断NS的NLR的Meta分析注:文献No.1~15依次为纳入研究文献[15]~[29]。NS为新生儿败血症,NLR为阴性似然比
图8 纳入15篇文献血清presepsin检测诊断NS的DOR的Meta分析注:文献No.1~15依次为纳入研究文献[15]~[29]。NS为新生儿败血症,DOR为诊断比值比
表2 纳入15篇文献血清presepsin检测诊断NS的亚组分析结果
组别 文献篇数(篇) 敏感度(%,95%CI) 敏感度异质性检验[I2值(%)/P值] 特异度(%,95%CI) 特异度异质性检验[I2值(%)/P值] PLR(95%CI) PLR异质性检验[I2值(%)/P值]
文献年份              
  2018年及以后 8 86(82~90) 74.7/<0.001 93(89~95) 65.0/0.006 9.90(5.09~19.26) 57.8/0.020
  2018年前 7 91(88~93) 85.9/<0.001 88(84~92) 82.8/<0.001 7.14(3.49~14.64) 73.4/0.001
受试儿所在国家              
  非洲 8 92(89~95) 79.8/<0.001 92(88~95) 71.1/0.001 10.07(4.71~21.54) 68.3/0.002
  亚、欧州 7 86(82~89) 80.7/<0.001 89(85~92) 80.9/<0.001 7.09(3.67~13.70) 67.6/0.005
血清presepsin诊断NS的临界值(pg/mL)              
  800 6 87(82~91) 75.6/0.001 90(85~94) 68.8/0.007 7.69(3.75~15.75) 57.0/0.040
  <800 9 90(87~92) 84.6/<0.001 90(87~93) 80.9/<0.001 9.45(4.71~18.96) 74.5/<0.001
研究设计类型              
  前瞻性 8 90(87~93) 83.2/<0.001 88(85~92) 80.0/<0.001 6.97(3.81~12.75) 69.3/0.002
  回顾性 7 87(83~90) 80.2/<0.001 93(89~96) 68.2/0.004 11.15(4.83~25.77) 64.0/0.010
血清presepsin检测方法              
  ELISA 7 92(89~95) 81.4/<0.001 94(91~97) 58.7/0.024 12.10(6.31~23.17) 42.9/0.105
  CLEIA 8 86(83~89) 79.6/<0.001 87(83~91) 80.3/<0.001 5.80(3.27~10.28) 65.9/0.005
组别 文献篇数(篇) NLR(95%CI) NLR异质性检验[I2值(%)/P值] DOR(95%CI) DOR异质性检验[I2值(%)/P值]
文献年份          
  2018年及以后 8 0.14(0.08~0.25) 65.6/0.005 122.10(36.26~411.13) 65.3/0.005
  2018年前 7 0.12(0.06~0.27) 84.5/<0.001 85.59(24.35~300.89) 75.2/<0.001
受试儿所在国家          
  非洲 8 0.07(0.03~0.16) 70.8/0.001 210.43(52.87~837.54) 67.9/0.003
  亚、欧州 7 0.19(0.11~0.32) 79.4/<0.001 51.97(18.46~146.26) 69.0/0.004
血清presepsin诊断NS的临界值(pg/mL)          
  800 6 0.13(0.06~0.28) 74.5/0.001 74.37(25.25~219.08) 50.4/0.073
  <800 9 0.13(0.07~0.23) 78.5/<0.001 130.36(37.75~450.18) 76.9/<0.001
研究设计类型          
  前瞻性 8 0.13(0.07~0.26) 80.7/<0.001 70.22(24.77~199.06) 70.3/0.001
  回顾性 7 0.13(0.07~0.24) 73.2/0.001 168.30(36.71~771.49) 70.6/0.002
血清presepsin检测方法          
  ELISA 7 0.07(0.03~0.17) 70.4/0.002 270.76(84.62~866.32) 40.5/0.121
  CLEIA 8 0.18(0.11~0.30) 78.0/<0.001 45.47(17.5~118.15) 69.0/0.002
图9 本研究纳入15篇文献发表偏倚Deek′s漏斗图注:DOR为诊断比值比。n为文献纳入样本量
[1]
Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis[J]. Lancet, 2017, 390(10104): 1770-1780. DOI: 10.1016/S0140-6736(17)31002-4.
[2]
Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, et al. The global burden of paediatric and neonatal sepsis: a systematic review[J]. Lancet Respir Med, 2018, 6(3): 223-230. DOI: 10.1016/S2213-2600(18)30063-8.
[3]
Hedegaard SS, Wisborg K, Hvas AM. Diagnostic utility of biomarkers for neonatal sepsis: a systematic review[J]. Infect Dis (Lond), 2015, 47(3): 117-124. DOI: 10.3109/00365548.2014.971053.
[4]
Sweeney TE, Sweeney TE, Wynn JL, et al. Validation of the sepsis metascore for diagnosis of neonatal sepsis[J]. J Pediatric Infect Dis Soc, 2018, 7(2): 129-135. DOI: 10.1093/jpids/pix021.
[5]
American College of Emergency Physicians Clinical Policies Committee, American College of Emergency Physicians Clinical Policies Subcommittee on Pediatric Fever. Clinical policy for children younger than three years presenting to the emergency department with fever[J]. Ann Emerg Med, 2003, 42(4): 530-545. DOI: 10.1067/s0196-0644(03)00628-0.
[6]
Shane AL, Stoll BJ. Neonatal sepsis: progress towards improved outcomes[J]. J Infect, 2014, 68(Suppl 1): S24-S32. DOI: 10.1016/j.jinf.2013.09.011.
[7]
Chiesa C, Panero A, Osborn JF, et al. Diagnosis of neonatal sepsis: a clinical and laboratory challenge[J]. Clin Chem, 2004, 50(2): 279-287. DOI: 10.1373/clinchem.2003.025171.
[8]
Memar MY, Baghi HB. Presepsin: a promising biomarker for the detection of bacterial infections[J]. Biomed Pharmacother, 2019, 111: 649-656. DOI: 10.1016/j.biopha.2018.12.124.
[9]
Zou Q, Wen W, Zhang XC. Presepsin as a novel sepsis biomarker[J]. World J Emerg Med, 2014, 5(1): 16-19. DOI: 10.5847/wjem.j.issn.1920-8642.2014.01.002.
[10]
Chenevier-Gobeaux C, Borderie D, Weiss N, et al. Presepsin (sCD14-ST), an innate immune response marker in sepsis[J]. Clin Chim Acta, 2015, 450: 97-103. DOI: 10.1016/j.cca.2015.06.026.
[11]
Wu CC, Lan HM, Han ST, et al. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein: a systematic review and Meta-analysis[J]. Ann Intensive Care, 2017, 7(1): 91. DOI: 10.1186/s13613-017-0316-z.
[12]
Bellos I, Fitrou G, Pergialiotis V, et al. The diagnostic accuracy of presepsin in neonatal sepsis: a Meta-analysis[J]. Eur J Pediatr, 2018, 177(5): 625-632. DOI: 10.1007/s00431-018-3114-1.
[13]
Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies[J]. Ann Intern Med, 2011, 155(8): 529-536. DOI: 10.7326/0003-4819-155-8-201110180-00009.
[14]
Shirakawa K, Naitou K, Hirose J, et al. Presepsin (sCD14-ST): development and evaluation of one-step ELISA with a new standard that is similar to the form of presepsin in septic patients[J]. Clin Chem Lab Med, 2011, 49(5): 937-939. DOI: 10.1515/CCLM.2011.145.
[15]
Ahmed AM, Mohammed AT, Bastawy S, et al. Serum biomarkers for the early detection of the early-onset neonatal sepsis a single-center prospective study[J]. Adv Neonatal Care, 2019, 19(5): E26-E32. DOI: 10.1097/ANC.0000000000000631.
[16]
Değirmencioğlu H, Ozer Bekmez B, Derme T, et al. Presepsin and fetuin-A dyad for the diagnosis of proven sepsis in preterm neonates[J]. BMC Infect Dis, 2019, 19(1): 695. DOI: 10.1186/s12879-019-4316-5.
[17]
El-Madbouly AA, El Sehemawy AA, Eldesoky NA, et al. Utility of presepsin, soluble triggering receptor expressed on myeloid cells-1, and neutrophil CD64 for early detection of neonatal sepsis[J]. Infect Drug Resist, 2019, 12: 311-319. DOI: 10.2147/IDR.S191533.
[18]
Gad GI, Shinkar DM, Kamel El-Din MM, et al. The utility of soluble CD14 subtype in early diagnosis of culture-proven early-onset neonatal sepsis and prediction of outcome[J]. Am J Perinatol, 2020, 37(5): 497-502. DOI: 10.1055/s-0039-1683863.
[19]
Kumar N, Dayal R, Singh P, et al. A comparative evaluation of presepsin with procalcitonin and CRP in diagnosing neonatal sepsis[J]. Indian J Pediatr, 2019, 86(2): 177-179. DOI: 10.1007/s12098-018-2659-3.
[20]
Montaldo P, Rosso R, Santantonio A, et al. Presepsin for the detection of early-onset sepsis in preterm newborns[J]. Pediatr Res, 2017, 81(2): 329-334. DOI: 10.1038/pr.2016.217.
[21]
Mostafa RM, Kholouss SM, MZakaria N, et al. Detection of presepsin and surface CD14 as a biomarker for early diagnosis of neonatal sepsis[J]. J Am Sci, 2015, 11(10): 104-116. DOI: 10.7537/marsjas111015.12.
[22]
Osman AS, Awadallah MG, El-Mageed Tabl HA, et al. Presepsin as a novel diagnostic marker in neonatal septicemia[J]. Egypt J Med Microbiol, 2015, 24(3): 21-26. DOI: 10.12816/0024924.
[23]
Ozdemir AA, Elgormus Y. Diagnostic value of presepsin in detection of early-onset neonatal sepsis[J]. Am J Perinatol, 2017, 34(6): 550-556. DOI: 10.1055/s-0036-1593851.
[24]
Rashwan NI, Hassan MH, Mohey El-Deen ZM, et al. Validity of biomarkers in screening for neonatal sepsis - a single center-hospital based study[J]. Pediatr Neonatol, 2019, 60(2): 149-155. DOI: 10.1016/j.pedneo.2018.05.001.
[25]
Sabry JH, Elfeky OA, Elsadek AE, et al. Presepsin as an early reliable diagnostic and prognostic marker of neonatal sepsis[J]. Int J Adv Res (IJAR), 2016, 4(6): 1538-1549. DOI: 10.21474/IJAR01/716.
[26]
Topcuoglu S, Arslanbuga C, Gursoy T, et al. Role of presepsin in the diagnosis of late-onset neonatal sepsis in preterm infants[J]. J Matern Fetal Neonatal Med, 2016, 29(11): 1834-1839. DOI: 10.3109/14767058.2015.1064885.
[27]
Xiao T, Chen LP, Liu H, et al. The analysis of etiology and risk factors for 192 cases of neonatal sepsis[J]. Biomed Res Int, 2017, 2017: 8617076. DOI: 10.1155/2017/8617076.
[28]
肖婷,陈丽萍,黄晓华,等. sCD14-ST在新生儿早发型脓毒症中的表达及其临床研究[J]. 右江民族医学院学报2018, 40(5): 451-454, 458. DOI: 10.3969/j.issn.1001-5817.2018.05.014.
[29]
陈丽萍,肖婷,黄晓华,等. Presepsin在新生儿迟发型脓毒症中的临床价值[J]. 右江民族医学院学报2019, 41(2): 135-138. DOI: 10.3969/j.issn.1001-5817.2019.02.004.
[30]
刘关键,吴泰相. 诊断性试验的Meta分析——SROC曲线法介绍[J]. 中国循证医学杂志2003, 3(1): 41-44. DOI: 10.3969/j.issn.1672-2531.2003.01.009.
[31]
Zaninotto M, Mion MM, Di Serio F, et al. PATHFAST NT-proBNP (N-terminal-pro B type natriuretic peptide): a multicenter evaluation of a new point-of-care assay[J]. Clin Chem Lab Med, 2010, 48(7): 1029-1034. DOI: 10.1515/CCLM.2010.222.
[32]
Peetz D, Schweigert R, Jachmann N, et al. Method comparison of cardiac marker assays on PATHFAST, StratusCS, AxSYM, Immulite 2000, triage, elecsys and cardiac reader[J]. Clin Lab, 2006, 52(11-12): 605-614.
[33]
Di Serio F, Caputo M, Zaninotto M, et al. Evaluation of analytical performance of the Pathfast cardiac troponin I[J]. Clin Chem Lab Med, 2009, 47(7): 829-833. DOI: 10.1515/CCLM.2009.182.
[34]
Okamura Y, Yokoi H. Development of a point-of-care assay system for measurement of presepsin (sCD14-ST)[J]. Clin Chim Acta, 2011, 412(23-24): 2157-2161. DOI: 10.1016/j.cca.2011.07.024.
[35]
Pugni L, Pietrasanta C, Milani S, et al. Presepsin (soluble CD14 subtype): reference ranges of a new sepsis marker in term and preterm neonates[J]. PLoS One, 2015, 10(12): e0146020. DOI: 10.1371/journal.pone.0146020.
[36]
Galliera E, Massaccesi L, de Vecchi E, et al. Clinical application of presepsin as diagnostic biomarker of infection: overview and updates[J]. Clin Chem Lab Med, 2020, 58(1): 11-17. DOI: 10.1515/cclm-2019-0643.
[1] Siping Zhang, Wei Liu, Pengcheng Ma. Therapeutic effects of lower extremity mild varus alignment after total knee arthroplasty[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(06): 808-817.
[2] Wanglin Luo, Chuanjun Yang, Guoxing Xu, Jianguo Yu, Weidong Sun, Wenjuan Yan, Zhi Feng. Meta analysis on implantation of different grafting materials in open wedge high tibial osteotomy[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(06): 818-826.
[3] Hongxing Chen, Lijun Zhang, Yong Zhang, Hu Li, Chi Zhou, Yinuo Fan. Meta-analysis of effect of external application of traditional Chinese medicine after arthroscopic debridement in knee osteoarthritis[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(05): 663-672.
[4] Wei Yang, Xia Hao, Dongzhen Zhu, Jinbo Zhang, Xuefei Tian, Bin Yao. A meta analysis of the clinical effect of traditional Chinese medicine on burn and scald patients[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(05): 419-426.
[5] Xiongxiong Li, Chan Zhou, Ting Xu, Yu Ren, Jin Shang. Metastasis rate of newly diagnosed ductal carcinoma in situ with microinvasive axillary lymph nodes: A Meta-analysis[J]. Chinese Archives of General Surgery(Electronic Edition), 2023, 17(06): 466-474.
[6] Zaibo Zhang, Bingyu Wang, Zhikai Jiao, Bibo Tan. Risk factors for lower extremity deep venous thrombosis after gastric cancer surgery: A Meta-analysis[J]. Chinese Archives of General Surgery(Electronic Edition), 2023, 17(06): 475-480.
[7] Huiming Wu, Renkai Guo, Huiyu Li. Safety and efficacy of robot-assisted natural orifice specimen extraction surgery for colorectal cancer: A meta-analysis[J]. Chinese Archives of General Surgery(Electronic Edition), 2023, 17(05): 395-400.
[8] Xian Mo, Chuang Yang. Meta-analysis of risk factors for portal vein thrombosis in patients with cirrhosis[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(06): 678-683.
[9] Xiaodan Wang, Yuan Wang, Xiangyu Cui, Xiaolei Ren. Analysis of pathogenic bacteria resistance of drug and high risk factors of death in urogenic sepsis after endoscopic surgery for upper urinary tract stones[J]. Chinese Journal of Endourology(Electronic Edition), 2023, 17(06): 611-615.
[10] Xuecheng Wu, Yuanwei Li, Wuxiong Yuan, Jiansong Wang, Yongzhong Shi, Qiang Lu, Zhuo Li, Jia Chen, Zhe Liu, Yili Teng, Zhiyong Gao. Diagnostic value of inflammatory mediators profile combined with procalcitonin in urogenic sepsis[J]. Chinese Journal of Endourology(Electronic Edition), 2023, 17(05): 476-480.
[11] Wenzhong Duan, Yanxia Bai, Wenting Xu, Hongxia Qi, Zhijian Lyu. Anesthetic effects of sevoflurane and propofol in hepatectomy: a Meta-analysis[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(06): 640-645.
[12] Hailong Yang, Manjun Deng, Yichen Fan, Mengyu Xu, Fangde Chen, Weihao Wu, Shengyuan Zhang. Risk factors of bile leakage after primary suture of laparoscopic common bile duct exploration: a Meta-analysis[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(05): 545-550.
[13] Hongli Xu, Yulin Yang, Qing Xue, Qian Zhang, Lihong Ma, Zhengang Qiu. Efficacy of extracorporeal shock wave for non-specific low back pain: a systematic review and Meta-analysis[J]. Chinese Journal of Geriatric Orthopaedics and Rehabilitation(Electronic Edition), 2023, 09(05): 307-314.
[14] Xiu Wang, Yiguo Wang. Efficacy and safety of ustekinumab in treating perianal fistulizing Crohn′s disease: a meta-analysis[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2023, 13(06): 514-519.
[15] Rui Tan, Jing Wang, Jiangquan Yu, Ruiqiang Zheng. Progress in understanding of role of high density lipoprotein, apolipoprotein A-I, and serum amyloid A in sepsis[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(06): 749-753.
Viewed
Full text


Abstract