[1] |
|
[2] |
Kim F, Polin RA, Hooven TA. Neonatal sepsis[J]. BMJ, 2020, 371:m3672. DOI: 10.1136/bmj.m3672.
|
[3] |
Fleischmann-Struzek C, Goldfarb DM, Schlattmann P,et al. The global burden of paediatric and neonatal sepsis: a systematic review[J]. Lancet Respir Med, 2018, 6(3):223-230. DOI: 10.1016/S2213-2600(18)30063-8.
|
[4] |
Workneh Bitew Z, Worku T, Alemu A. Effects of vitamin D on neonatal sepsis: a systematic review and Meta-analysis[J]. Food Sci Nutr, 2021, 9(1):375-388. DOI: 10.1002/fsn3.2003.
|
[5] |
Berlak N, Shany E, Ben-Shimol S,et al. Late onset sepsis: comparison between coagulase-negative staphylococci and other bacteria in the neonatal intensive care unit [J]. Infect Dis (Lond), 2018, 50(10):764-770. DOI: 10.1080/23744235.2018.1487075.
|
[6] |
Bourika V, Hantzi E, Michos A,et al. Clinical value of serum amyloid-A protein, high-density lipoprotein cholesterol and apolipoprotein-A1 in the diagnosis and follow-up of neonatal sepsis[J]. Pediatr Infect Dis J, 2020, 39(8):749-755. DOI: 10.1097/INF.0000000000002682.
|
[7] |
Hashem HE, El Masry SA, Mokhtar AM,et al. Valuable role of neutrophil CD64 and highly sensitive CRP biomarkers for diagnostic, monitoring, and prognostic evaluations of sepsis patients in neonatal ICUs[J]. Biomed Res Int, 2020, 2020:6214363. DOI: 10.1155/2020/6214363.
|
[8] |
Chauhan N, Tiwari S, Jain U. Potential biomarkers for effective screening of neonatal sepsis infections: an overview[J]. Microb Pathog, 2017, 107:234-242. DOI: 10.1016/j.micpath.2017.03.042.
|
[9] |
Malcolmson C, Ng K, Hughes S,et al. Impact of matrix-assisted laser desorption and ionization time-of-flight and antimicrobial stewardship intervention on treatment of bloodstream infections in hospitalized children[J]. J Pediatr Infect Dis Soc, 2017, 6(2):178-186. DOI: 10.1093/jpids/piw033.
|
[10] |
Celik IH, Hanna M, Canpolat FE, et al. Diagnosis of neonatal sepsis: the past, present and future [J]. Pediatr Res, 2022, 91(2): 337-350. DOI: 10.1038/s41390-021-01696-z.
|
[11] |
Stoll BJ, Puopolo KM, Hansen NI,et al. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies[J]. JAMA Pediatr, 2020, 174(7):e200593. DOI: 10.1001/jamapediatrics.2020.0593.
|
[12] |
Esposito S, Principi N. Adjunctive therapy to treat neonatal sepsis[J]. Expert Rev Clin Pharmacol, 2020, 13(1):65-73. DOI: 10.1080/17512433.2020.1699790.
|
[13] |
Leal YA, Álvarez-Nemegyei J, Lavadores-May AI,et al. Cytokine profile as diagnostic and prognostic factor in neonatal sepsis[J]. J Matern Fetal Neonatal Med, 2019, 32(17):2830-2836. DOI: 10.1080/14767058.2018.1449828.
|
[14] |
Raveendran AV, Kumar A, Gangadharan S. Biomarkers and newer laboratory investigations in the diagnosis of sepsis[J]. J R Coll Physicians Edinb, 2019, 49(3):207-216. DOI: 10.4997/JRCPE.2019.308.
|
[15] |
Memar MY, Alizadeh N, Varshochi M,et al. Immunologic biomarkers for diagnostic of early-onset neonatal sepsis[J]. J Matern Fetal Neonatal Med, 2019, 32(1):143-153. DOI: 10.1080/14767058.2017.1366984.
|
[16] |
Balayan S, Chauhan N, Chandra R,et al. Recent advances in developing biosensing based platforms for neonatal sepsis[J]. Biosens Bioelectron, 2020, 169:112552. DOI: 10.1016/j.bios.2020.112552.
|
[17] |
Pierrakos C, Velissaris D, Bisdorff M,et al. Biomarkers of sepsis: time for a reappraisal[J]. Crit Care, 2020, 24(1):287. DOI: 10.1186/s13054-020-02993-5.
|
[18] |
Brown J, Meader N, Wright K,et al. Assessment of C-reactive protein diagnostic test accuracy for late-onset infection in newborn infants: a systematic review and Meta-analysis[J]. JAMA Pediatr, 2020, 174(3):260-268. DOI: 10.1001/jamapediatrics.2019.5669.
|
[19] |
Tessema B, Lippmann N, Willenberg A, et al. The diagnostic performance of interleukin-6 and C-reactive protein for early identification of neonatal sepsis [J]. Diagnostics (Basel), 2020, 10(11): 978. DOI: 10.3390/diagnostics10110978.
|
[20] |
Velissaris D, Zareifopoulos N, Lagadinou M,et al. Procalcitonin and sepsis in the Emergency Department: an update[J]. Eur Rev Med Pharmacol Sci, 2021, 25(1):466-479. DOI: 10.26355/eurrev_202101_24416.
|
[21] |
Stocker M, van Herk W, El Helou S,et al. C-reactive protein, procalcitonin, and white blood count to rule out neonatal early-onset sepsis within 36 hours: a secondary analysis of the Neonatal Procalcitonin Intervention Study[J]. Clin Infect Dis, 2021, 73(2):e383-383e390. DOI: 10.1093/cid/ciaa876.
|
[22] |
Yang KD, He Y, Xiao S,et al. Identification of progranulin as a novel diagnostic biomarker for early-onset sepsis in neonates[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(12):2405-2414. DOI: 10.1007/s10096-020-03981-x.
|
[23] |
Bang YJ, Hu Z, Li Y,et al. Serum amyloid A delivers retinol to intestinal myeloid cells to promote adaptive immunity[J]. Science, 2021, 373(6561):eabf9232. DOI: 10.1126/science.abf9232.
|
[24] |
Bengnér J, Quttineh M, Gäddlin PO,et al. Serum amyloid A - A prime candidate for identification of neonatal sepsis[J]. Clin Immunol, 2021, 229:108787. DOI: 10.1016/j.clim.2021.108787.
|
[25] |
Meng L, Song Z, Liu A,et al. Effects of lipopolysaccharide-binding protein (LBP) single nucleotide polymorphism (SNP) in infections, inflammatory diseases, metabolic disorders and cancers[J]. Front Immunol, 2021, 12:681810. DOI: 10.3389/fimmu.2021.681810.
|
[26] |
Gradek-Kwinta E, Czyzycki M, Lopatkiewicz AM,et al. Lipopolysaccharide binding protein and sCD14 as risk markers of stroke-associated pneumonia[J]. J Neuroimmunol, 2021, 354:577532. DOI: 10.1016/j.jneuroim.2021.577532.
|
[27] |
García de Guadiana Romualdo L, Albaladejo Otón MD, Rebollo Acebes S,et al. Diagnostic accuracy of lipopolysaccharide-binding protein for sepsis in patients with suspected infection in the emergency department[J]. Ann Clin Biochem, 2018, 55(1):143-148. DOI: 10.1177/0004563217694378.
|
[28] |
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression[J]. Nat Rev Nephrol, 2018, 14(2):121-137. DOI: 10.1038/nrneph.2017.165.
|
[29] |
Grondman I, Pirvu A, Riza A,et al. Biomarkers of inflammation and the etiology of sepsis[J]. Biochem Soc Trans, 2020, 48(1):1-14. DOI: 10.1042/BST20190029.
|
[30] |
Cortés JS, Losada PX, Fernández LX, et al. Interleukin-6 as a biomarker of early-onset neonatal sepsis [J]. Am J Perinatol, 2021, 38(S 01): e338-e346. DOI: 10.1055/s-0040-1710010.
|
[31] |
Berka I, Korček P, Straňák Z. C-reactive protein, interleukin-6, and procalcitonin in diagnosis of late-onset bloodstream infection in very preterm infants [J]. J Pediatric Infect Dis Soc, 2021, piab071. DOI: 10.1093/jpids/piab071.
|
[32] |
AbdAllah NB, Toraih EA, Al Ageeli E,et al. MYD88, NFKB1, and IL6 transcripts overexpression are associated with poor outcomes and short survival in neonatal sepsis[J]. Sci Rep, 2021, 11(1):13374. DOI: 10.1038/s41598-021-92912-7.
|
[33] |
Ebenebe CU, Hesse F, Blohm ME,et al. Diagnostic accuracy of interleukin-6 for early-onset sepsis in preterm neonates[J]. J Matern Fetal Neonatal Med, 2021, 34(2):253-258. DOI: 10.1080/14767058.2019.1606194.
|
[34] |
Nakstad B. The diagnostic utility of procalcitonin, interleukin-6 and interleukin-8, and hyaluronic acid in the Norwegian consensus definition for early-onset neonatal sepsis (EONS)[J]. Infect Drug Resist, 2018, 11:359-368. DOI: 10.2147/IDR.S155965.
|
[35] |
Kalayci AG, Adam B, Yilmazer F, et al. The value of immunoglobulin and complement levels in the early diagnosis of neonatal sepsis[J]. Acta Paediatr, 1997, 86(9): 999-1002. DOI: 10.1111/j.1651-2227.1997.tb15187.x.
|
[36] |
Omran A, Sobh H, Abdalla MO,et al. Salivary and serum interleukin-10, C-reactive protein, mean platelet volume, and CRP/MPV ratio in the diagnosis of late-onset neonatal sepsis in full-term neonates[J]. J Immunol Res, 2021, 2021:4884537. DOI: 10.1155/2021/4884537.
|
[37] |
Froeschle GM, Bedke T, Boettcher M, et al. T cell cytokines in the diagnostic of early-onset sepsis[J]. Pediatr Res, 2021, 90(1):191-196. DOI: 10.1038/s41390-020-01248-x.
|
[38] |
Chen W, Lai D, Li Y,et al. Neuronal-activated ILC2s promote IL-17A production in lung γδ T cells during sepsis[J]. Front Immunol, 2021, 12:670676. DOI: 10.3389/fimmu.2021.670676.
|
[39] |
Pietrasanta C, Ronchi A, Vener C, et al. Presepsin (Soluble CD14 Subtype) as an early marker of neonatal sepsis and septic shock: a prospective diagnostic trial [J]. Antibiotics (Basel), 2021, 10(5): 580. DOI: 10.3390/antibiotics10050580.
|
[40] |
van Maldeghem I, Nusman CM, Visser DH. Soluble CD14 subtype (sCD14-ST) as biomarker in neonatal early-onset sepsis and late-onset sepsis: a systematic review and Meta-analysis[J]. BMC Immunol, 2019, 20(1):17. DOI: 10.1186/s12865-019-0298-8.
|
[41] |
Hung SK, Lan HM, Han ST, et al. Current evidence and limitation of biomarkers for detecting sepsis and systemic infection [J]. Biomedicines, 2020, 8(11): 494. DOI: 10.3390/biomedicines8110494.
|
[42] |
Kalia N, Singh J, Kaur M. The ambiguous role of mannose-binding lectin (MBL) in human immunity[J]. Open Med (Wars), 2021, 16(1):299-310. DOI: 10.1515/med-2021-0239.
|
[43] |
Lemańska-Perek A, Adamik B. Fibronectin and its soluble EDA-FN isoform as biomarkers for inflammation and sepsis[J]. Adv Clin Exp Med, 2019, 28(11):1561-1567. DOI: 10.17219/acem/104531.
|
[44] |
Doni A, Mantovani A, Bottazzi B, et al. PTX3 regulation of inflammation, hemostatic response, tissue repair, and resolution of fibrosis favors a role in limiting idiopathic pulmonary fibrosis [J]. Front Immunol, 2021, 12: 676702. DOI: 10.3389/fimmu.2021.676702.
|
[45] |
Lee YT, Gong M, Chau A, et al. Pentraxin-3 as a marker of sepsis severity and predictor of mortality outcomes: a systematic review and Meta-analysis [J]. J Infect, 2018, 76(1): 1-10. DOI: 10.1016/j.jinf.2017.10.016.
|
[46] |
Bourika V, Bartzeliotou A, Spiliopoulou C,et al. Paraoxonase (PON)-1 activity in septic neonates: One more arrow in the quiver of biomarkers of neonatal sepsis?[J]. Clin Biochem, 2021, 93:119-121. DOI: 10.1016/j.clinbiochem.2021.03.019.
|