Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2021, Vol. 17 ›› Issue (05): 497 -502. doi: 10.3877/cma.j.issn.1673-5250.2021.05.001

Forum

Protection effects of vitamin D and its analogues on children with pediatric kidney diseases

Hui Shang, Yuhong Tao()   

  • Received:2021-05-01 Revised:2021-09-11 Published:2021-10-01
  • Corresponding author: Yuhong Tao
  • Supported by:
    Applied Basic Research Project of Science & Technology Department of Sichuan Province(2017JY0076)

Vitamin D is a fat-soluble vitamin, which plays a role through its active forms acting on vitamin D receptor (VDR). In addition to the role of regulating calcium and phosphorus metabolism, vitamin D also has various nonclassical effects, such as immunoregulation, inhibiting inflammation, regulating cell growth and differentiation, promoting bone growth, anti-tumor cell proliferation and so on. Vitamin D deficiency is common in children with kidney disease. This paper intends to focus on the classification of vitamin D and its analogues, and their mechanisms of protecting pediatric kidney diseases, including inhibiting activity of renin-angiotensin-aldosterone system (RAAS), protecting podocytes, reducing proteinuria, relieving renal inflammation, delaying renal fibrosis, preventing cardiovascular diseases, and so on.

[5]
Lee SM, An WS. Supplementary nutrients for prevention of vascular calcification in patients with chronic kidney disease[J]. Korean J Intern Med, 2019, 34(3): 459-469. DOI: 10.3904/kjim.2019.125.
[6]
Hampson KJ, Gay ML, Band ME. Pediatric nephrotic syndrome: pharmacologic and nutrition management[J]. Nutr Clin Pract, 2021, 36(2): 331-343. DOI: 10.1002/ncp.10622.
[7]
Polderman N, Cushing M, McFadyen K, et al. Dietary intakes of children with nephrotic syndrome[J]. Pediatr Nephrol, 2021, 36(9): 2819-2826. DOI: 10.1007/s00467-021-05055-2.
[8]
Banerjee S, Basu S, Akhtar S, et al. Free vitamin D levels in steroid-sensitive nephrotic syndrome and healthy controls[J]. Pediatr Nephrol, 2020, 35(3): 447-454. DOI: 10.1007/s00467-019-04433-1.
[9]
Yang SP, Ong L, Loh TP, et al. Calcium, vitamin D, and bone derangement in nephrotic syndrome[J]. J Asean Fed Endocr Soc, 2021, 36(1): 50-55. DOI: 10.15605/jafes.036.01.12.
[10]
Szymczak-Pajor I, S'liwińska A. Analysis of association between vitamin D deficiency and insulin resistance[J]. Nutrients, 2019, 11(4): 794. DOI: 10.3390/nu11040794.
[11]
Lipińska-Opaka A, Tomaszewska A, Kubiak JZ, et al. Vitamin D and immunological patterns of allergic diseases in children[J]. Nutrients, 2021, 13(1): 177. DOI: 10.3390/nu13010177.
[12]
Yang S, Li A, Wang J, et al. Vitamin D receptor: a novel therapeutic target for kidney diseases[J]. Curr Med Chem, 2018, 25(27): 3256-3271. DOI: 10.2174/0929867325666180214122352.
[13]
Subandiyah K, Khanifa H, Kardani AK. Effect of corticosteroid and vitamin D3 as combined therapy on 25(OH) vitamin D serum level and regulatory T (Treg) cells population in children with idiopathic nephrotic syndrome[J]. Bali Med J, 2018, 7(3): 639-644. DOI: 10.15562/bmj.v7i3.769.
[14]
Song Z, Xiao C, Jia X, et al. Vitamin D/VDR protects against diabetic kidney disease by restoring podocytes autophagy[J]. Diabetes Metab Syndr Obes, 2021, 14: 1681-1693. DOI: 10.2147/Dmso.S303018.
[15]
Shi W, Guo L, Liu G, et al. Protective effect of calcitriol on podocytes in spontaneously hypertensive rat[J]. J Chin Med Assoc, 2018, 81(8): 691-698. DOI: 10.1016/j.jcma.2018.01.010.
[16]
Campbell KN, Tumlin JA. Protecting podocytes: a key target for therapy of focal segmental glomerulosclerosis[J]. Am J Nephrol, 2018, 47(Suppl 1): 14-29. DOI: 10.1159/000481634.
[17]
Zeier M, Reiser J. suPAR and chronic kidney disease-a podocyte story[J]. Pflugers Arch, 2017, 469(7-8): 1017-1020. DOI: 10.1007/s00424-017-2026-7.
[18]
Li Z, Wu N, Wang J, et al. Roles of endovascular calyx related enzymes in endothelial dysfunction and diabetic vascular complications[J]. Front Pharmacol, 2020, 11: 590614. DOI: 10.3389/fphar.2020.590614.
[19]
Masola V, Zaza G, Onisto M, et al. Heparanase: another renal player controlled by vitamin D[J]. J Pathol, 2016, 238(1): 7-9. DOI: 10.1002/path.4639.
[20]
Li XH, Huang XP, Pan L, et al. Vitamin D deficiency may predict a poorer outcome of IgA nephropathy[J]. BMC Nephrol, 2016, 17: 164. DOI: 10.1186/s12882-016-0378-4.
[21]
Deng J, Zheng X, Xie H, et al. Calcitriol in the treatment of IgA nephropathy with non-nephrotic range proteinuria: a Meta-analysis of randomized controlled trials[J]. Clin Nephrol, 2017, 87(1): 21-27. DOI: 10.5414/CN108915.
[22]
Yuan D, Fang Z, Sun F, et al. Effect of vitamin D and tacrolimus combination therapy on IgA nephropathy[J]. Med Sci Monit, 2017, 23: 3170-3177. DOI: 10.12659/msm.905073.
[23]
Zhao D, Zhang CJ, Yang R, et al. Effect of 1,25(OH)2D3 on the proliferation of human mesangial cells and their expression of Ki67[J]. Genet Mol Res, 2017, 16(2): gmr16029191. DOI: 10.4238/gmr16029191.
[24]
Xiaowei L, Bo W, Li L, et al. Comparison of the effects of valsartan plus activated vitamin D versus valsartan alone in IgA nephropathy with moderate proteinuria[J]. Int Urol Nephrol, 2020, 52(1): 129-136. DOI: 10.1007/s11255-019-02329-5.
[25]
Tamayo M, Manzanares E, Bas M, et al. Calcitriol (1,25-dihydroxyvitamin D3) increases L-type calcium current via protein kinase a signaling and modulates calcium cycling and contractility in isolated mouse ventricular myocytes[J]. Heart Rhythm, 2017, 14(3): 432-439. DOI: 10.1016/j.hrthm.2016.12.013.
[26]
Lin TC, Wu JY, Kuo ML, et al. Correlation between disease activity of pediatric-onset systemic lupus erythematosus and level of vitamin D in Taiwan: a case-cohort study[J]. J Microbiol Immunol Infect, 2018, 51(1): 110-114. DOI: 10.1016/j.jmii.2015.12.005.
[27]
Correa-Rodríguez M, Pocovi-Gerardino G, Callejas-Rubio JL, et al. Vitamin D levels are associated with disease activity and damage accrual in systemic lupus erythematosus patients[J]. Biol Res Nurs, 2021, 23(3): 455-463. DOI: 10.1177/1099800420983596.
[28]
Pérez-Ferro M, Romero-Bueno FI, Serrano Del Castillo C, et al. A subgroup of lupus patients with nephritis, innate T cell activation and low vitamin D is identified by the enhancement of circulating MHC class Ⅰ-related chain A[J]. Clin Exp Immunol, 2019, 196(3): 336-344. DOI: 10.1111/cei.13273.
[29]
Brunner HI, Bennett MR, Gulati G, et al. Urine biomarkers to predict response to lupus nephritis therapy in children and young adults[J]. J Rheumatol, 2017, 44(8): 1239-1248. DOI: 10.3899/jrheum.161128.
[30]
Yu Q, Qiao Y, Liu D, et al. Vitamin D protects podocytes from autoantibodies induced injury in lupus nephritis by reducing aberrant autophagy[J]. Arthritis Res Ther, 2019, 21(1): 19. DOI: 10.1186/s13075-018-1803-9.
[31]
Go DJ, Lee JY, Kang MJ, et al. Urinary vitamin D-binding protein, a novel biomarker for lupus nephritis, predicts the development of proteinuric flare[J]. Lupus, 2018, 27(10): 1600-1615. DOI: 10.1177/0961203318778774.
[32]
Kumar YA, Vivek K, Vinod K, et al. The effect of vitamin D supplementation on bone metabolic markers in chronic kidney disease[J]. J Bone Miner Res, 2018, 33(3): 404-409. DOI: 10.1002/jbmr.3314.
[33]
Lerch C, Shroff R, Wan M, et al. Effects of nutritional vitamin D supplementation on markers of bone and mineral metabolism in children with chronic kidney disease[J]. Nephrol Dial Transplant, 2018, 33(12): 2208-2217. DOI: 10.1093/ndt/gfy012.
[34]
Gluba-Brzózka A, Franczyk B, Ciakowska-Rysz A, et al. Impact of vitamin D on the cardiovascular system in advanced chronic kidney disease (CKD) and dialysis patients[J]. Nutrients, 2018, 10(6):709. DOI: 10.3390/nu10060709.
[35]
Dahan I, Thawho N, Farber E, et al. The iron-Klotho-VDR axis is a major determinant of proximal convoluted tubule injury in haptoglobin 2-2 genotype diabetic nephropathy patients and mice[J]. J Diabetes Res, 2018, 2018: 7163652. DOI: 10.1155/2018/7163652.
[36]
Imani PD, Aujo J, Kiguli S, et al. Chronic kidney disease impacts health-related quality of life of children in Uganda, East Africa[J]. Pediatr Nephrol, 2021, 36(2): 323-331. DOI: 10.1007/s00467-020-04705-1.
[1]
Gembillo G, Cernaro V, Salvo A, et al. Role of vitamin D status in diabetic patients with renal disease[J]. Medicinca (Kaunas), 2019, 55(6): 273. DOI: 10.3390/medicina55060273.
[2]
Melamed ML, Chonchol M, Gutiérrez OM, et al. The role of vitamin D in CKD stages 3 to 4: report of a scientific workshop sponsored by the national kidney foundation[J]. Am J Kidney Dis, 2018, 72(6): 834-845. DOI: 10.1053/j.ajkd.2018.06.031.
[3]
Baur AC, Brandsch C, Steinmetz B, et al. Differential effects of vitamin D3 vs vitamin D2 on cellular uptake, tissue distribution and activation of vitamin D in mice and cells[J]. J Steroid Biochem Mol Biol, 2020, 204: 105768. DOI: 10.1016/j.jsbmb.2020.105768.
[4]
Zhang T, Ju H, Chen H, et al. Comparison of paricalcitol and calcitriol in dialysis patients with secondary hyperparathyroidism: a Meta-analysis of randomized controlled studies[J]. Ther Apher Dial, 2019, 23(1): 73-79. DOI: 10.1111/1744-9987.12760.
[37]
Shroff R, Aitkenhead H, Costa N, et al. Normal 25-hydroxyvitamin D levels are associated with less proteinuria and attenuate renal failure progression in children with CKD[J]. J Am Soc Nephrol, 2016, 27(1): 314-322. DOI: 10.1681/ASN.2014090947.
[38]
Paydas S, Karaer R, Kara E. Pleiotrophic effects of vitamin D in proteinuric chronic kidney disease patients[J]. Turk Neph Dial Transpl, 2018, 27(1): 76-81. DOI: 10.5262/tndt.2018.1001.06.
[39]
Govender D, Damjanovic L, Gaza CA, et al. Vitamin D decreases silencer methylation to downregulate renin gene expression[J]. Gene, 2021, 786: 145623. DOI: 10.1016/j.gene.2021.145623.
[40]
Zhang YL, Qiao SK, Guo XN, et al. Arsenic trioxide-induced cell apoptosis and cell cycle arrest are potentiated by 1,25-dihydroxyvitamin D3 in human leukemia K562 cells[J]. Oncol Lett, 2021, 22(1): 509. DOI: 10.3892/ol.2021.12770.
[41]
Sergeev IN. Vitamin D status and vitamin D-dependent apoptosis in obesity[J]. Nutrients, 2020, 12(5): 1392. DOI: 10.3390/nu12051392.
[42]
Wu CC, Liao MT, Hsiao PJ, et al. Antiproteinuria effect of calcitriol in patients with chronic kidney disease and vitamin D deficiency: a randomized controlled study[J]. J Ren Nutr, 2020, 30(3): 200-207. DOI: 10.1053/j.jrn.2019.09.001.
[43]
Ahmed OM, Ali TM, Abdel Gaid MA, et al. Effects of enalapril and paricalcitol treatment on diabetic nephropathy and renal expressions of TNF-α,p53, caspase-3 and Bcl-2 in STZ-induced diabetic rats[J]. PLoS One, 2019, 14(9): e0214349. DOI: 10.1371/journal.pone.0214349.
[44]
Hamzawy M, Gouda S, Rashid L, et al. The cellular selection between apoptosis and autophagy: roles of vitamin D, glucose and immune response in diabetic nephropathy[J]. Endocrine, 2017, 58(1): 66-80. DOI: 10.1007/s12020-017-1402-6.
[45]
Galior K, Grebe S, Singh R. Development of vitamin D toxicity from overcorrection of vitamin D deficiency: a review of case reports[J]. Nutrients, 2018, 10(8): 953. DOI: 10.3390/nu10080953.
[46]
Marcinowska-Suchowierska E, Kupisz-Urbańska M, Łukaszkiewicz J, et al. Vitamin D toxicity-a clinical perspective[J]. Front Endocrinol (Lausanne), 2018, 9: 550. DOI: 10.3389/fendo.2018.00550.
[47]
Abdullah A, Hussain S, Rita A, et al. Vitamin D intoxication and nephrocalcinosis in a young breastfed infant[J]. Case Rep Endocrinol, 2021, 2021: 3286274. DOI: 10.1155/2021/3286274.
[1] Xuan Zhang, Yutong Ma, Yuqian Miao, Yun Zhang, Shiwen Wu, Xiaochu Dang, Yingying Chen, Zhaoming Zhong, Xuejuan Wang, Miao Hu, Yanfeng Sun, Xiuzhu Ma, Faqin Lyu, Haiyan Kou. Ultrasound assessment of diaphragm function in pediatric patients with Duchenne muscular dystrophy[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(10): 1068-1073.
[2] Baofu Zhang, Jin Yu, Jingjing Ye, Jiangen Yu, Xiaohui Ma, Xiwang Liu. Echocardioimagedata diagnosis of anomalous pulmonary venous connection caused by congenital malposition of the septum primum[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(10): 1074-1080.
[3] Dan Han, Ting Wang, Huan Xiao, Lirong Zhu, Jingyu Chen, Yi Tang. Diagnostic value of contrast enhanced ultrasound versus contrast enhanced computed tomography in benign and malignant liver lesions in children[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(09): 939-944.
[4] Tingting Liu, Yanbing Lin, Shan Wang, Murong Chen, Zijian Tang, Dongling Dai, Bei Xia. Evaluation of metabolic dysfunction-associated fatty liver disease in children by ultrasound-guided attenuation parameter[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(08): 787-794.
[5] Yuhan Zhou, Huan Xiao, Chunjiang Yang, Juan Zhou, Lirong Zhu, Juan Xu, Fangting Mou. Diagnostic value of ultrasound in children with temporary hip synovitis[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(08): 795-800.
[6] Jiu Wang, Jun Chen, Xia Zhu, Yangjin Mima, Sheng Zhao, Xinlin Chen, Jianhua Li, Shuang Wang. Effect of implementing fetal systemic ultrasound screening in Material and Child Health Hospital of Shannan[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(07): 728-733.
[7] Jie Mi, Chen Chen, Jialing Li, Haina Pei, Hengbo Zhang, Fei Li, Dongjie Li. Analysis of the characteristics of children's head and face trauma[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(06): 511-515.
[8] Ting Li, Lin Zhang. Relationship between serum fatty acid metabolites and vitamin D levels and colorectal cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2023, 17(06): 661-665.
[9] Tao Ma, Chunwei Ye, Tao Liu, Wenxi Peng, Zhipeng Li. Comparison of laparoscopic and open disconnected pyeloplasty in the treatment of ureteropelvic junction obstruction in children[J]. Chinese Journal of Endourology(Electronic Edition), 2023, 17(06): 605-610.
[10] Lei Lyu, Xiao Feng, Kaiming He, Kaining Zeng, Qing Yang, Haijin Lyu, Huimin Yi, Shuhong Yi, Yang Yang, Binsheng Fu. Value of revised King's score in evaluation of live transplantation timing for children with acute liver failure due to Wilson's disease and literature review[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(06): 661-668.
[11] Zehui Huang, Jiexian Liang, Wei Zeng. Application of dexmedetomidine combined with esketamine in painless gastroscopy in children[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2023, 13(06): 510-513.
[12] Xiangyu Zhu, Jianmei Wang, Hui Zhang, Hongying Ye. Correlation analysis between left ventricular function parameters and liver cirrhosis using non-invasive left ventricular pressure-strain cycle[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2023, 13(06): 494-498.
[13] Shaohong Zhuo, Xiuling Lin, Cuimei Zhou, Weilian Xiong, Xingzao Ma. Application value of CD64 index combined with serum SAA/CRP and PCT in the diagnosis of children with infectious gastrointestinal diseases[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2023, 13(06): 505-509.
[14] Cheng Yi, Wei Wei, Yuliang Zhao. The last piece of picture puzzle: conceptual evolution of acute kidney disease[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(08): 906-910.
[15] Jing Li, Lingling Zhang, Wei Xing. Value of concept of interest induction before anesthesia induction in pediatric surgery and its effect on family satisfaction[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(07): 812-817.
Viewed
Full text


Abstract