[45] |
Song Y, Sun S, Yu Y, et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for renal injury in asphyxiated preterm infants[J]. Exp Ther Med, 2017, 13(4): 1245-1248. DOI: 10.3892/etm.2017.4107.
|
[46] |
Elmas AT, Karadag A, Tabel Y, et al. Analysis of urine biomarkers for early determination of acute kidney injury in non-septic and non-asphyxiated critically ill preterm neonates[J]. J Matern Fetal Neonatal Med, 2017, 30(3): 302-308. DOI: 10.3109/14767058.2016.1171311.
|
[47] |
和东阳,张迎辉,吴跃伟. 尿胱抑素C、肾损伤分子-1及中性粒细胞明胶酶相关脂质运载蛋白在高胆红素血症早产儿早期肾损伤诊断中的价值[J]. 新乡医学院学报,2018, 35(5): 385-388, 392. DOI: 10.7683/xxyxyxb.2018.05.007.
|
[1] |
Sweetman DU. Neonatal acute kidney injury - severity and recovery prediction and the role of serum and urinary biomarkers[J]. Early Hum Dev, 2017, 105(1): 57-61. DOI: 10.1016/j.earlhumdev.2016.12.006.
|
[2] |
Shalaby MA, Sawan ZA, Nawawi E, et al. Incidence, risk factors, and outcome of neonatal acute kidney injury: a prospective cohort study[J]. Pediatr Nephrol, 2018, 33(9): 1617-1624. DOI: 10.1007/s00467-018-3966-7.
|
[3] |
Askenazi DJ. AWAKEN-Ing a new frontier in neonatal nephrology[J]. Front Pediatr, 2020, 8(1): 21. DOI: 10.3389/fped.2020.00021.
|
[4] |
Cleper R, Shavit I, Blumenthal D, et al. Neonatal acute kidney injury: recording rate, course, and outcome: one center experience[J]. J Matern Fetal Neonatal Med, 2019, 32(20): 3379-3385. DOI: 10.1080/14767058.2018.1463985.
|
[5] |
Velazquez DM, Reidy KJ, Sharma M, et al. The effect of hemodynamically significant patent ductus arteriosus on acute kidney injury and systemic hypertension in extremely low gestational age newborns[J]. J Matern Fetal Neonatal Med, 2019, 32(19): 3209-3214. DOI: 10.1080/14767058.2018.1460349.
|
[6] |
Nada A, Bonachea EM, Askenazi DJ. Acute kidney injury in the fetus and neonate[J]. Semin Fetal Neonatal Med, 2017, 22(2): 90-97. DOI: 10.1016/j.siny.2016.12.001.
|
[7] |
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8(4): R204-R212. DOI: 10.1186/cc2872.
|
[8] |
Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care, 2007, 11(2): R31. DOI: 10.1186/cc5713.
|
[9] |
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120(4): C179-C184. DOI: 10.1159/000339789.
|
[10] |
Go H, Momoi N, Kashiwabara N, et al. Neonatal and maternal serum creatinine levels during the early postnatal period in preterm and term infants[J]. PLoS One, 2018, 13(5): e0196721. DOI: 10.1371/journal.pone.0196721.
|
[11] |
Kandasamy Y, Rudd D, Smith R. The relationship between body weight, cystatin C and serum creatinine in neonates[J]. J Neonatal Perinatal Med, 2017, 10(4): 419-423. DOI: 10.3233/NPM-171719.
|
[12] |
Kasamatsu A, Ohashi A, Tsuji S, et al. Prediction of urine volume soon after birth using serum cystatin C[J]. Clin Exp Nephrol, 2016, 20(5): 764-769. DOI: 10.1007/s10157-015-1215-y.
|
[13] |
Kastl JT. Renal function in the fetus and neonate - the creatinine enigma[J]. Semin Fetal Neonatal Med, 2017, 22(2): 83-89. DOI: 10.1016/j.siny.2016.12.002.
|
[14] |
Muhari-Stark E, Burckart GJ. Glomerular filtration rate estimation formulas for pediatric and neonatal use[J]. J Pediatr Pharmacol Ther, 2018, 23(6): 424-431. DOI: 10.5863/1551-6776-23.6.424.
|
[15] |
Filler G, Guerrero-Kanan R, Alvarez-Elías AC. Assessment of glomerular filtration rate in the neonate: is creatinine the best tool?[J]. Curr Opin Pediatr, 2016, 28(2): 173-179. DOI: 10.1097/MOP.0000000000000318.
|
[16] |
Parmaksιz G, Noyan A, Dursun H, et al. Role of new biomarkers for predicting renal scarring in vesicoureteral reflux: NGAL, KIM-1, and L-FABP[J]. Pediatr Nephrol, 2016, 31(1): 97-103. DOI: 10.1007/s00467-015-3194-3.
|
[17] |
DeFreitas MJ, Seeherunvong W, Katsoufis CP, et al. Longitudinal patterns of urine biomarkers in infants across gestational ages[J]. Pediatr Nephrol, 2016, 31(7): 1179-1188. DOI: 10.1007/s00467-016-3327-3.
|
[18] |
Sweetman DU, Onwuneme C, Watson WR, et al. Renal function and novel urinary biomarkers in infants with neonatal encephalopathy[J]. Acta Paediatr, 2016, 105(11): e513-e519. DOI: 10.1111/apa.13555.
|
[19] |
Schrezenmeier EV, Barasch J, Budde K, et al. Biomarkers in acute kidney injury-pathophysiological basis and clinical performance[J]. Acta Physiol (Oxf), 2017, 219(3): 554-572. DOI: 10.1111/apha.12764.
|
[20] |
Askenazi DJ, Koralkar R, Patil N, et al. Acute kidney injury urine biomarkers in very low-birth-weight infants[J]. Clin J Am Soc Nephrol, 2016, 11(9): 1527-1535. DOI: 10.2215/CJN.13381215.
|
[21] |
Madise-Wobo AD, Gbelee OH, Solarin A, et al. Serum cystatin C levels in healthy Nigerian neonates: is there a need for normative values in Nigerian babies?[J]. Saudi J Kidney Dis Transpl, 2017, 28(6): 1247-1255. DOI: 10.4103/1319-2442.220881.
|
[22] |
Yang Y, Li SJ, Pan JJ, et al. Reference values for serum cystatin C in very low-birthweight infants: from two centres of China[J]. J Paediatr Child Health, 2018, 54(3): 284-288. DOI: 10.1111/jpc.13732.
|
[23] |
Nakhjavan-Shahraki B, Yousefifard M, Ataei N, et al. Accuracy of cystatin C in prediction of acute kidney injury in children; serum or urine levels: which one works better? A systematic review and Meta-analysis[J]. BMC Nephrol, 2017, 18(1): 120. DOI: 10.1186/s12882-017-0539-0.
|
[24] |
|
[25] |
Zhang D, Gao L, Ye H, et al. Impact of thyroid function on cystatin C in detecting acute kidney injury: a prospective, observational study[J]. BMC Nephrol, 2019, 20(1): 41. DOI: 10.1186/s12882-019-1201-9.
|
[26] |
Deng Y, Wang L, Hou Y, et al. The influence of glycemic status on the performance of cystatin C for acute kidney injury detection in the critically ill[J]. Ren Fail, 2019, 41(1): 139-149. DOI: 10.1080/0886022X.2019.1586722.
|
[27] |
Khosravi N, Zadkarami M, Chobdar F, et al. The value of urinary cystatin C level to predict neonatal kidney injury[J]. Curr Pharm Des, 2018, 24(25): 3002-3004. DOI: 10.2174/1381612824666180918100819.
|
[28] |
Nakashima T, Inoue H, Fujiyoshi J, et al. Longitudinal analysis of serum cystatin C for estimating the glomerular filtration rate in preterm infants[J]. Pediatr Nephrol, 2016, 31(6): 983-989. DOI: 10.1007/s00467-015-3309-x.
|
[29] |
Abdelaal NA, Shalaby SA, Khashana AK, et al. Serum cystatin C as an earlier predictor of acute kidney injury than serum creatinine in preterm neonates with respiratory distress syndrome[J]. Saudi J Kidney Dis Transpl, 2017, 28(5): 1003-1014. DOI: 10.4103/1319-2442.215148.
|
[30] |
El-Gammacy TM, Shinkar DM, Mohamed NR, et al. Serum cystatin C as an early predictor of acute kidney injury in preterm neonates with respiratory distress syndrome[J]. Scand J Clin Lab Invest, 2018, 78(5): 352-357. DOI: 10.1080/00365513.2018.1472803.
|
[31] |
Zhang Y, Zhang B, Wang D, et al. Evaluation of novel biomarkers for early diagnosis of acute kidney injury in asphyxiated full-term newborns: a case-control study[J]. Med Princ Pract, 2020, 29(3): 285-291. DOI: 10.1159/000503555.
|
[32] |
Kamianowska M, Wasilewska A, Szczepański M, et al. Health term-born girls had higher levels of urine neutrophil gelatinase-associated lipocalin than boys during the first postnatal days[J]. Acta Paediatr, 2016, 105(9): 1105-1108. DOI: 10.1111/apa.13508.
|
[33] |
Hanna M, Brophy PD, Giannone PJ, et al. Early urinary biomarkers of acute kidney injury in preterm infants[J]. Pediatr Res, 2016, 80(2): 218-223. DOI: 10.1038/pr.2016.70.
|
[34] |
Bellos I, Fitrou G, Daskalakis G, et al. Neutrophil gelatinase-associated lipocalin as predictor of acute kidney injury in neonates with perinatal asphyxia: a systematic review and Meta-analysis[J]. Eur J Pediatr, 2018, 177(10): 1425-1434. DOI: 10.1007/s00431-018-3221-z.
|
[35] |
Levin-Schwartz Y, Curtin P, Svensson K, et al. Length of gestation and birth weight are associated with indices of combined kidney biomarkers in early childhood[J]. PLoS One, 2019, 14(12): e0227219. DOI: 10.1371/journal.pone.0227219.
|
[36] |
Sellmer A, Bech BH, Bjerre JV, et al. Urinary neutrophil gelatinase-associated lipocalin in the evaluation of patent ductus arteriosus and AKI in very preterm neonates: a cohort study[J]. BMC Pediatr, 2017, 17(1): 7. DOI: 10.1186/s12887-016-0761-0.
|
[37] |
Baumert M, Surmiak P, Więcek A, et al. Serum NGAL and copeptin levels as predictors of acute kidney injury in asphyxiated neonates[J]. Clin Exp Nephrol, 2017, 21(4): 658-664. DOI: 10.1007/s10157-016-1320-6.
|
[38] |
Kisiel A, Roszkowska-Blaim M, Pańczyk-Tomaszewska M, et al. Effect of perinatal risk factors on neutrophil gelatinase-associated lipocalin (NGAL) level in umbilical and peripheral blood in neonates[J]. Cent Eur J Immunol, 2017, 42(3): 274-280. DOI: 10.5114/ceji.2017.70970.
|
[39] |
|
[40] |
Cheng B, Jin Y, Liu G, et al. Urinary N-acetyl-beta-D-glucosaminidase as an early marker for acute kidney injury in full-term newborns with neonatal hyperbilirubinemia[J]. Dis Markers, 2014, 2014: 315843. DOI: 10.1155/2014/315843.
|
[41] |
Kamphuis L, Bouw MP, Roelofs HM, et al. Tubular injury biomarkers to detect gentamicin-induced acute kidney injury in the neonatal intensive care unit[J]. Am J Perinatol, 2016, 33(2): 180-187. DOI: 10.1055/s-0035-1563714.
|
[42] |
Oncel MY, Canpolat FE, Arayici S, et al. Urinary markers of acute kidney injury in newborns with perinatal asphyxia[J]. Ren Fail, 2016, 38(6): 882-888. DOI: 10.3109/0886022X.2016.1165070.
|
[43] |
Stojanović VD, Barišić NA, Radovanović TD, et al. Serum glutathione S-transferase Pi as predictor of the outcome and acute kidney injury in premature newborns[J]. Pediatr Nephrol, 2018, 33(7): 1251-1256. DOI: 10.1007/s00467-018-3910-x.
|
[44] |
Shin SY, Ha JY, Lee SL, et al. Increased urinary neutrophil gelatinase-associated lipocalin in very-low-birth-weight infants with oliguria and normal serum creatinine[J]. Pediatr Nephrol, 2017, 32(6): 1059-1065. DOI: 10.1007/s00467-016-3572-5.
|