Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2021, Vol. 17 ›› Issue (01): 7 -14. doi: 10.3877/cma.j.issn.1673-5250.2021.01.002

Special Issue:

Forum

Current research status on biomarkers of neonatal acute kidney injury

Huiying Wang, Min Su(), Xiangyu Gao   

  • Received:2020-09-11 Revised:2021-01-09 Published:2021-02-01
  • Corresponding author: Min Su
  • Supported by:
    Project of Jiangsu Youth Medical Talents(QNRC2016384)

Neonatal acute kidney injury (AKI) refers to which kidney function is impaired for a variety of reasons in a short term. The neonates with AKI present a variety of pathological states, such as hypovolemic shock, hypoxia, hypothermia and so on, accompanied by an acute and reversible increment in serum creatinine level associated or not with a reduction in urine output, and resulting in derangements in water-electrolyte balance, acid-base and metabolic waste clearance. The manifestation of AKI is latent, so the neonates with AKI are easily miss diagnosed by clinics. The special pathophysiological characteristics of neonates with AKI are quite different from adult patients with AKI. Currently, the continuously improved diagnostic criteria for adult AKI are not suitable for diagnosis of neonates with AKI. Therefore, new biomarkers of kidney injury are needed for early prediction and auxiliary diagnosis of neonatal AKI. At present, the new biomarkers that can reflect renal tubular, glomerular injury and contribute to diagnosis of neonatal AKI include: cystatin C (Cys-C), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule (KIM)-1, β2-microglobulin (β2-MG), α1-microglobulin (α1-MG), N-acetyl-β-D-glucosaminidase (NAG), liver-type fatty acid-binding protein (L-FABP), axon guidance factor netrin (Netrin)-1, epidermal growth factor (EGF), interleukin (IL)-18, glutathione-S-transferase (GST) and β-trace protein (BTP), etc.. Among many new biomarkers for predicting neonatal AKI, the biomarkers which are more and better applied in clinic are urine or serum Cys-C, urine or serum NGAL, and urine KIM-1. In terms of early prediction and auxiliary diagnosis of neonatal AKI, they perform better than the detection of serum creatinine and urine output. However, their " normal value" is largely affected by many factors, such as gestational age, birth weight, postnatal age and systemic infection of newborns. These factors can reduce the sensitivity and specificity of predicting neonatal AKI. When multiple biomarkers are combined to predict neonatal AKI, the sensitivity can be improved in spite of reduced specificity of prediction.

[45]
Song Y, Sun S, Yu Y, et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for renal injury in asphyxiated preterm infants[J]. Exp Ther Med, 2017, 13(4): 1245-1248. DOI: 10.3892/etm.2017.4107.
[46]
Elmas AT, Karadag A, Tabel Y, et al. Analysis of urine biomarkers for early determination of acute kidney injury in non-septic and non-asphyxiated critically ill preterm neonates[J]. J Matern Fetal Neonatal Med, 2017, 30(3): 302-308. DOI: 10.3109/14767058.2016.1171311.
[47]
和东阳,张迎辉,吴跃伟. 尿胱抑素C、肾损伤分子-1及中性粒细胞明胶酶相关脂质运载蛋白在高胆红素血症早产儿早期肾损伤诊断中的价值[J]. 新乡医学院学报,2018, 35(5): 385-388, 392. DOI: 10.7683/xxyxyxb.2018.05.007.
[1]
Sweetman DU. Neonatal acute kidney injury - severity and recovery prediction and the role of serum and urinary biomarkers[J]. Early Hum Dev, 2017, 105(1): 57-61. DOI: 10.1016/j.earlhumdev.2016.12.006.
[2]
Shalaby MA, Sawan ZA, Nawawi E, et al. Incidence, risk factors, and outcome of neonatal acute kidney injury: a prospective cohort study[J]. Pediatr Nephrol, 2018, 33(9): 1617-1624. DOI: 10.1007/s00467-018-3966-7.
[3]
Askenazi DJ. AWAKEN-Ing a new frontier in neonatal nephrology[J]. Front Pediatr, 2020, 8(1): 21. DOI: 10.3389/fped.2020.00021.
[4]
Cleper R, Shavit I, Blumenthal D, et al. Neonatal acute kidney injury: recording rate, course, and outcome: one center experience[J]. J Matern Fetal Neonatal Med, 2019, 32(20): 3379-3385. DOI: 10.1080/14767058.2018.1463985.
[5]
Velazquez DM, Reidy KJ, Sharma M, et al. The effect of hemodynamically significant patent ductus arteriosus on acute kidney injury and systemic hypertension in extremely low gestational age newborns[J]. J Matern Fetal Neonatal Med, 2019, 32(19): 3209-3214. DOI: 10.1080/14767058.2018.1460349.
[6]
Nada A, Bonachea EM, Askenazi DJ. Acute kidney injury in the fetus and neonate[J]. Semin Fetal Neonatal Med, 2017, 22(2): 90-97. DOI: 10.1016/j.siny.2016.12.001.
[7]
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8(4): R204-R212. DOI: 10.1186/cc2872.
[8]
Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care, 2007, 11(2): R31. DOI: 10.1186/cc5713.
[9]
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120(4): C179-C184. DOI: 10.1159/000339789.
[10]
Go H, Momoi N, Kashiwabara N, et al. Neonatal and maternal serum creatinine levels during the early postnatal period in preterm and term infants[J]. PLoS One, 2018, 13(5): e0196721. DOI: 10.1371/journal.pone.0196721.
[11]
Kandasamy Y, Rudd D, Smith R. The relationship between body weight, cystatin C and serum creatinine in neonates[J]. J Neonatal Perinatal Med, 2017, 10(4): 419-423. DOI: 10.3233/NPM-171719.
[12]
Kasamatsu A, Ohashi A, Tsuji S, et al. Prediction of urine volume soon after birth using serum cystatin C[J]. Clin Exp Nephrol, 2016, 20(5): 764-769. DOI: 10.1007/s10157-015-1215-y.
[13]
Kastl JT. Renal function in the fetus and neonate - the creatinine enigma[J]. Semin Fetal Neonatal Med, 2017, 22(2): 83-89. DOI: 10.1016/j.siny.2016.12.002.
[14]
Muhari-Stark E, Burckart GJ. Glomerular filtration rate estimation formulas for pediatric and neonatal use[J]. J Pediatr Pharmacol Ther, 2018, 23(6): 424-431. DOI: 10.5863/1551-6776-23.6.424.
[15]
Filler G, Guerrero-Kanan R, Alvarez-Elías AC. Assessment of glomerular filtration rate in the neonate: is creatinine the best tool?[J]. Curr Opin Pediatr, 2016, 28(2): 173-179. DOI: 10.1097/MOP.0000000000000318.
[16]
Parmaksιz G, Noyan A, Dursun H, et al. Role of new biomarkers for predicting renal scarring in vesicoureteral reflux: NGAL, KIM-1, and L-FABP[J]. Pediatr Nephrol, 2016, 31(1): 97-103. DOI: 10.1007/s00467-015-3194-3.
[17]
DeFreitas MJ, Seeherunvong W, Katsoufis CP, et al. Longitudinal patterns of urine biomarkers in infants across gestational ages[J]. Pediatr Nephrol, 2016, 31(7): 1179-1188. DOI: 10.1007/s00467-016-3327-3.
[18]
Sweetman DU, Onwuneme C, Watson WR, et al. Renal function and novel urinary biomarkers in infants with neonatal encephalopathy[J]. Acta Paediatr, 2016, 105(11): e513-e519. DOI: 10.1111/apa.13555.
[19]
Schrezenmeier EV, Barasch J, Budde K, et al. Biomarkers in acute kidney injury-pathophysiological basis and clinical performance[J]. Acta Physiol (Oxf), 2017, 219(3): 554-572. DOI: 10.1111/apha.12764.
[20]
Askenazi DJ, Koralkar R, Patil N, et al. Acute kidney injury urine biomarkers in very low-birth-weight infants[J]. Clin J Am Soc Nephrol, 2016, 11(9): 1527-1535. DOI: 10.2215/CJN.13381215.
[21]
Madise-Wobo AD, Gbelee OH, Solarin A, et al. Serum cystatin C levels in healthy Nigerian neonates: is there a need for normative values in Nigerian babies?[J]. Saudi J Kidney Dis Transpl, 2017, 28(6): 1247-1255. DOI: 10.4103/1319-2442.220881.
[22]
Yang Y, Li SJ, Pan JJ, et al. Reference values for serum cystatin C in very low-birthweight infants: from two centres of China[J]. J Paediatr Child Health, 2018, 54(3): 284-288. DOI: 10.1111/jpc.13732.
[23]
Nakhjavan-Shahraki B, Yousefifard M, Ataei N, et al. Accuracy of cystatin C in prediction of acute kidney injury in children; serum or urine levels: which one works better? A systematic review and Meta-analysis[J]. BMC Nephrol, 2017, 18(1): 120. DOI: 10.1186/s12882-017-0539-0.
[24]
何必子,刘登礼,孙秋凤,等. 新生儿高胆红素血症与肾损伤的相关性研究[J]. 中国新生儿科杂志,2016, 31(6): 454-456. DOI: 10.3969/j.issn.1673-6710.2016.06.013.
[25]
Zhang D, Gao L, Ye H, et al. Impact of thyroid function on cystatin C in detecting acute kidney injury: a prospective, observational study[J]. BMC Nephrol, 2019, 20(1): 41. DOI: 10.1186/s12882-019-1201-9.
[26]
Deng Y, Wang L, Hou Y, et al. The influence of glycemic status on the performance of cystatin C for acute kidney injury detection in the critically ill[J]. Ren Fail, 2019, 41(1): 139-149. DOI: 10.1080/0886022X.2019.1586722.
[27]
Khosravi N, Zadkarami M, Chobdar F, et al. The value of urinary cystatin C level to predict neonatal kidney injury[J]. Curr Pharm Des, 2018, 24(25): 3002-3004. DOI: 10.2174/1381612824666180918100819.
[28]
Nakashima T, Inoue H, Fujiyoshi J, et al. Longitudinal analysis of serum cystatin C for estimating the glomerular filtration rate in preterm infants[J]. Pediatr Nephrol, 2016, 31(6): 983-989. DOI: 10.1007/s00467-015-3309-x.
[29]
Abdelaal NA, Shalaby SA, Khashana AK, et al. Serum cystatin C as an earlier predictor of acute kidney injury than serum creatinine in preterm neonates with respiratory distress syndrome[J]. Saudi J Kidney Dis Transpl, 2017, 28(5): 1003-1014. DOI: 10.4103/1319-2442.215148.
[30]
El-Gammacy TM, Shinkar DM, Mohamed NR, et al. Serum cystatin C as an early predictor of acute kidney injury in preterm neonates with respiratory distress syndrome[J]. Scand J Clin Lab Invest, 2018, 78(5): 352-357. DOI: 10.1080/00365513.2018.1472803.
[31]
Zhang Y, Zhang B, Wang D, et al. Evaluation of novel biomarkers for early diagnosis of acute kidney injury in asphyxiated full-term newborns: a case-control study[J]. Med Princ Pract, 2020, 29(3): 285-291. DOI: 10.1159/000503555.
[32]
Kamianowska M, Wasilewska A, Szczepański M, et al. Health term-born girls had higher levels of urine neutrophil gelatinase-associated lipocalin than boys during the first postnatal days[J]. Acta Paediatr, 2016, 105(9): 1105-1108. DOI: 10.1111/apa.13508.
[33]
Hanna M, Brophy PD, Giannone PJ, et al. Early urinary biomarkers of acute kidney injury in preterm infants[J]. Pediatr Res, 2016, 80(2): 218-223. DOI: 10.1038/pr.2016.70.
[34]
Bellos I, Fitrou G, Daskalakis G, et al. Neutrophil gelatinase-associated lipocalin as predictor of acute kidney injury in neonates with perinatal asphyxia: a systematic review and Meta-analysis[J]. Eur J Pediatr, 2018, 177(10): 1425-1434. DOI: 10.1007/s00431-018-3221-z.
[35]
Levin-Schwartz Y, Curtin P, Svensson K, et al. Length of gestation and birth weight are associated with indices of combined kidney biomarkers in early childhood[J]. PLoS One, 2019, 14(12): e0227219. DOI: 10.1371/journal.pone.0227219.
[36]
Sellmer A, Bech BH, Bjerre JV, et al. Urinary neutrophil gelatinase-associated lipocalin in the evaluation of patent ductus arteriosus and AKI in very preterm neonates: a cohort study[J]. BMC Pediatr, 2017, 17(1): 7. DOI: 10.1186/s12887-016-0761-0.
[37]
Baumert M, Surmiak P, Więcek A, et al. Serum NGAL and copeptin levels as predictors of acute kidney injury in asphyxiated neonates[J]. Clin Exp Nephrol, 2017, 21(4): 658-664. DOI: 10.1007/s10157-016-1320-6.
[38]
Kisiel A, Roszkowska-Blaim M, Pańczyk-Tomaszewska M, et al. Effect of perinatal risk factors on neutrophil gelatinase-associated lipocalin (NGAL) level in umbilical and peripheral blood in neonates[J]. Cent Eur J Immunol, 2017, 42(3): 274-280. DOI: 10.5114/ceji.2017.70970.
[39]
曹晓燕,张惠荣,章伟,等. 尿神经导向因子-1和肾损伤分子-1对窒息后新生儿急性肾损伤的诊断价值探讨[J]. 中国当代儿科杂志,2016, 18(1): 24-28. DOI: 10.7499/j.issn.1008-8830.2016.01.006.
[40]
Cheng B, Jin Y, Liu G, et al. Urinary N-acetyl-beta-D-glucosaminidase as an early marker for acute kidney injury in full-term newborns with neonatal hyperbilirubinemia[J]. Dis Markers, 2014, 2014: 315843. DOI: 10.1155/2014/315843.
[41]
Kamphuis L, Bouw MP, Roelofs HM, et al. Tubular injury biomarkers to detect gentamicin-induced acute kidney injury in the neonatal intensive care unit[J]. Am J Perinatol, 2016, 33(2): 180-187. DOI: 10.1055/s-0035-1563714.
[42]
Oncel MY, Canpolat FE, Arayici S, et al. Urinary markers of acute kidney injury in newborns with perinatal asphyxia[J]. Ren Fail, 2016, 38(6): 882-888. DOI: 10.3109/0886022X.2016.1165070.
[43]
Stojanović VD, Barišić NA, Radovanović TD, et al. Serum glutathione S-transferase Pi as predictor of the outcome and acute kidney injury in premature newborns[J]. Pediatr Nephrol, 2018, 33(7): 1251-1256. DOI: 10.1007/s00467-018-3910-x.
[44]
Shin SY, Ha JY, Lee SL, et al. Increased urinary neutrophil gelatinase-associated lipocalin in very-low-birth-weight infants with oliguria and normal serum creatinine[J]. Pediatr Nephrol, 2017, 32(6): 1059-1065. DOI: 10.1007/s00467-016-3572-5.
[1] Jingqi Zhang, Yang Jiang, Jialu Sun, Xingzhe Tang, Yufei Zhao, Ying Cui, Xinxiang Li, Jingyue Dai, lin Fu, Xingui Peng. Early identification of sepsis with acute kidney injury by perirenal CT features combined with serum creatinine[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2024, 17(04): 285-292.
[2] Heng Fan, Min Sun, Jianhua Zhu. Protective effect of salidroside on septic acute kidney injury in rats by inhibiting phosphatidylinositol 3 kinase/protein kinase B/mammalian target of rapamycin signal pathway[J]. Chinese Journal of Critical Care Medicine(Electronic Edition), 2024, 17(03): 188-195.
[3] Jinli Zhang, Maomao Xi, Zhigang Chu, Xiagang Luan, Nuo Chen, Deyun Wang, Weiguo Xie. Analysis of risk factors of early acute kidney injury in patients with massive burn injuries[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(04): 282-287.
[4] Rui Peng, Ruiwen Yang, Danning Wei, Yongliang Xia. Role of succinate receptor 1 in exacerbation of kidney ischemia-reperfusion injury[J]. Chinese Journal of Transplantation(Electronic Edition), 2024, 18(03): 159-164.
[5] Branch of Organ Transplant of Chinese Medical Association, Branch of Organ Transplant Physicians of Chinese Medical Doctor Association. Clinical practice guidelines for kidney injury management of liver transplant recipients in China(2023 edition)[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(03): 276-288.
[6] Xia Du, Mengqing Ma, Changchun Cao. Research progress on the pathogenesis and intervention targets of contrast-induced acute kidney injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(05): 279-282.
[7] Junnan Guo, Hui Lin, Yilin Ren, Xi Qiao. Progress of research on the role of amino acid metabolism disturbance in the transition from AKI to CKD[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(05): 283-287.
[8] Nan Yuan, Mengjie Huang, Yunfeng Bai, Xiaofan Li, Congjuan Luo, Jianwen Chen. Analysis of teaching points and learning effect in the establishment of an acute kidney injury-chronic kidney disease transition model in mice[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(04): 226-230.
[9] Ling Lin, Jingru Li, Ruihua Shen, Hui Lin, Xi Qiao. Bioinformatics analysis of hub genes of acute kidney injury and acute lung injury in mice[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(03): 134-144.
[10] Yinan Zhang, Guozhen Zhu. Research progress on the transition from acute kidney injury to chronic kidney disease[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(02): 106-112.
[11] Jianfang Zhou, Xuying Luo, Linlin Zhang, Hongliang Li, Yanlin Yang, Guangqiang Chen, Guangzhi Shi. Incidence, risk factors, and prognostic impact of acute kidney injury in critically ill patients after craniotomy[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(02): 148-156.
[12] Zengli Xiao, Anqi Du, Yao Sun, Huiying Zhao, Youzhong An. Risk factors analysis and nomogram establishment for patients developing AKI after intracerebral hemorrhage surgery[J]. Chinese Journal of Critical Care & Intensive Care Medicine(Electronic Edition), 2024, 10(02): 157-163.
[13] Nan Si, Hongtao Sun. Research progress on risk factors of renal dysfunction after traumatic brain injury[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(05): 300-305.
[14] Yan Shen, Junfeng Zhang, Chunfang Tang. Predictive value of prognostic nutritional index combined with PCT,CysC,and RBP levels for acute pancreatitis complicated with acute kidney injury[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2024, 14(06): 536-540.
[15] Shirui Yan, Hui Xiong. Identification of risk factors for acute kidney injury in patients with infective endocarditis and prediction of death risk in such patients with acute kidney injury[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(07): 618-624.
Viewed
Full text


Abstract