[1] |
Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions [J]. J Clin Invest, 2005, 115(10): 2656-2664. DOI: 10.1172/JCI26373.
|
[2] |
Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes [J]. Science, 2004, 306(5695): 457-461. DOI: 10.1126/science.1103160.
|
[3] |
Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? [J]. Antioxid Redox Signal, 2007, 9(12): 2277-2293. DOI: 10.1089/ars.2007.1782.
|
[4] |
Gardner BM, Pincus D, Gotthardt K, et al. Endoplasmic reticulum stress sensing in the unfolded protein response [J]. Cold Spring Harb Perspect Biol, 2013, 5(3): a013169. DOI: 10.1101/cshperspect.a013169.
|
[5] |
Rutkowski DT, Kaufman RJ. That which does not kill me makes me stronger: adapting to chronic ER stress [J]. Trends Biochem Sci, 2007, 32(10): 469-476. DOI: 10.1016/j.tibs.2007.09.003.
|
[6] |
马孝甜. 内质网应激介导的滋养细胞凋亡与子痫前期的发病关系的研究[D]. 南京:南京医科大学,2011.
|
[7] |
Hammadi M, Oulidi A, Gackière F, et al. Modulation of ER stress and apoptosis by endoplasmic reticulum calcium leak via translocon during unfolded protein response: involvement of GRP78 [J]. FASEB J, 2013, 27(4): 1600-1609. DOI: 10.1096/fj.12-218875.
|
[8] |
Wu J, Kaufman RJ. From acute ER stress to physiological roles of the unfolded protein response [J]. Cell Death Differ, 2006, 13(3): 374-384. DOI: 10.1038/sj.cdd.4401840.
|
[9] |
Szegezdi E, Logue SE, Gorman AM, et al. Mediators of endoplasmic reticulum stress-induced apoptosis [J]. EMBO Rep, 2006, 7(9): 880-885. DOI: 10.1038/sj.embor.7400779.
|
[10] |
Sarcinelli C, Dragic H, Piecyk M, et al. ATF4-dependent NRF2 transcriptional regulation promotes antioxidant protection during endoplasmic reticulum stress [J]. Cancers (Basel), 2020, 12(3): 569. DOI: 10.3390/cancers12030569.
|
[11] |
Liu Z, Lv Y, Zhao N, et al. Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate [J]. Cell Death Dis, 2015, 6(7): e1822. DOI: 10.1038/cddis.2015.183.
|
[12] |
Civelek M, Manduchi E, Riley RJ, et al. Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis [J]. Circ Res, 2009, 105(5): 453-461. DOI: 10.1161/CIRCRESAHA.109.203711.
|
[13] |
Haze K, Okada T, Yoshida H, et al. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response [J]. Biochem J, 2001, 355(Pt 1): 19-28. DOI: 10.1042/0264-6021:3550019.
|
[14] |
Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress [J]. Nat Cell Biol, 2011, 13(3): 184-190. DOI: 10.1038/ncb0311-184.
|
[15] |
Sun H, Wei G, Liu H, et al. Inhibition of XBP1s ubiquitination enhances its protein stability and improves glucose homeostasis [J]. Metabolism, 2020, 105: 154046. DOI: 10.1016/j.metabol.2019.154046.
|
[16] |
Sicari D, Delaunay-Moisan A, Combettes L, et al. A guide to assessing endoplasmic reticulum homeostasis and stress in mammalian systems [J]. FEBS J, 2020, 287(1): 27-42. DOI: 10.1111/febs.15107.
|
[17] |
Lin JH, Li H, Yasumura D, et al. IRE1 signaling affects cell fate during the unfolded protein response [J]. Science, 2007, 318(5852): 944-949. DOI: 10.1126/science.1146361.
|
[18] |
Díaz-Hung ML, Martínez G, Hetz C. Emerging roles of the unfolded protein response (UPR) in the nervous system: a link with adaptive behavior to environmental stress? [J]. Int Rev Cell Mol Biol, 2020, 350(1): 29-61. DOI: 10.1016/bs.ircmb.2020.01.004.
|
[19] |
Kaufman RJ. Orchestrating the unfolded protein response in health and disease [J]. J Clin Invest, 2002, 110(10): 1389-1398. DOI: 10.1172/JCI16886.
|
[20] |
Kumar R, Azam S, Sullivan JM, et al. Brain ischemia and reperfusion activates the eukaryotic initiation factor 2alpha kinase, PERK [J]. J Neurochem, 2001, 77(5): 1418-1421. DOI: 10.1046/j.1471-4159.2001.00387.x.
|
[21] |
|
[22] |
Li Y, Guo Y, Tang J, et al. New insights into the roles of CHOP-induced apoptosis in ER stress [J]. Acta Biochim Biophys Sin (Shanghai), 2015, 47(2): 146-147. DOI: 10.1093/abbs/gmu128.
|
[23] |
Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis: the story so far [J]. Ann N Y Acad Sci, 2003, 1010(1): 186-194. DOI: 10.1196/annals.1299.032.
|
[24] |
Inoue H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome) [J]. Nat Genet, 1998, 20(2): 143-148. DOI: 10.1038/2441.
|
[25] |
Morikawa S, Tajima T, Nakamura A, et al. A novel heterozygous mutation of the WFS1 gene leading to constitutive endoplasmic reticulum stress is the cause of Wolfram syndrome [J]. Pediatr Diabetes, 2017, 18(8): 934-941. DOI: 10.1111/pedi.12513.
|
[26] |
Ivask M, Hugill A, Kõks S. RNA-sequencing of WFS1-deficient pancreatic islets [J]. Physiol Rep, 2016, 4(7): e12750. DOI: 10.14814/phy2.12750.
|
[27] |
Yamaguchi S, Ishihara H, Tamura A, et al. Endoplasmic reticulum stress and N-glycosylation modulate expression of WFS1 protein [J]. Biochem Biophys Res Commun, 2004, 325(1): 250-256. DOI: 10.1016/j.bbrc.2004.10.017.
|
[28] |
De Falco M, Manente L, Lucariello A, et al. Localization and distribution of wolframin in human tissues [J]. Front Biosci (Elite Ed), 2012, 4: 1986-1998. DOI: 10.2741/519.
|
[29] |
Kovacs-Nagy R, Elek Z, Szekely A, et al. Association of aggression with a novel microRNA binding site polymorphism in the wolframin gene [J]. Am J Med Genet B Neuropsychiatr Genet, 2013, 162B(4): 404-412. DOI: 10.1002/ajmg.b.32157.
|
[30] |
Kakiuchi C, Ishigaki S, Oslowski CM, et al. Valproate, a mood stabilizer, induces WFS1 expression and modulates its interaction with ER stress protein GRP94 [J]. PLoS One, 2009, 4(1): e4134. DOI: 10.1371/journal.pone.0004134.
|
[31] |
Ueda K, Kawano J, Takeda K, et al. Endoplasmic reticulum stress induces WFS1 gene expression in pancreatic beta-cells via transcriptional activation [J]. Eur J Endocrinol, 2005, 153(1): 167-176. DOI: 10.1530/eje.1.01945.
|
[32] |
Yamada T, Ishihara H, Tamura A, et al. WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta-cells [J]. Hum Mol Genet, 2006, 15(10): 1600-1609. DOI: 10.1093/hmg/ddl081.
|
[33] |
Fonseca SG, Fukuma M, Lipson KL, et al. WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells [J]. J Biol Chem, 2005, 280(47): 39609-39615. DOI: 10.1074/jbc.M507426200.
|
[34] |
Fonseca SG, Ishigaki S, Oslowski CM, et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells [J]. J Clin Invest, 2010, 120(3): 744-755. DOI: 10.1172/JCI39678.
|
[35] |
Fonseca SG, Burcin M, Gromada J, et al. Endoplasmic reticulum stress in beta-cells and development of diabetes [J]. Curr Opin Pharmacol, 2009, 9(6): 763-770. DOI: 10.1016/j.coph.2009.07.003.
|
[36] |
Kõks S, Soomets U, Paya-Cano JL, et al. WFS1 gene deletion causes growth retardation in mice and interferes with the growth hormone pathway [J]. Physiol Genomics, 2009, 37(3): 249-259. DOI: 10.1152/physiolgenomics.90407.2008.
|
[37] |
Huopio H, Cederberg H, Vangipurapu J, et al. Association of risk variants for type 2 diabetes and hyperglycemia with gestational diabetes [J]. Eur J Endocrinol, 2013, 169(3): 291-297. DOI: 10.1530/EJE-13-0286.
|
[38] |
De Franco E, Flanagan SE, Yagi T, et al. Dominant ER stress-inducing WFS1 mutations underlie a genetic syndrome of neonatal/infancy-onset diabetes, congenital sensorineural deafness, and congenital cataracts [J]. Diabetes, 2017, 66(7): 2044-2053. DOI: 10.2337/db16-1296.
|
[39] |
Noormets K, Kõks S, Kavak A, et al. Male mice with deleted Wolframin ( Wfs1) gene have reduced fertility [J]. Reprod Biol Endocrinol, 2009, 7:82. DOI: 10.1186/1477-7827-7-82.
|
[40] |
Karna KK, Shin YS, Choi BR, et al. The Role of endoplasmic reticulum stress response in male reproductive physiology and pathology: a review[J]. World J Mens Health, 2019. DOI: 10.5534/wjmh.190038.
|
[41] |
Domènech E, Kruyer H, Gómez C, et al. First prenatal diagnosis for Wolfram syndrome by molecular analysis of the WFS1 gene [J]. Prenat Diagn, 2004, 24(10): 787-789. DOI: 10.1002/pd.982.
|
[42] |
Rugolo S, Mirabella D, Palumbo MA, et al. Complete Wolfram syndrome and successful pregnancy [J]. Eur J Obstet Gynecol Reprod Biol, 2002, 105(2): 192-193. DOI: 10.1016/s0301-2115(02)00150-1.
|
[43] |
Lucariello A, Perna A, Sellitto C, et al. Modulation of wolframin expression in human placenta during pregnancy: comparison among physiological and pathological states [J]. Biomed Res Int, 2014, 2014: 985478. DOI: 10.1155/2014/985478.
|
[44] |
Xu T, Zhou Z, Liu N, et al. Disrupted compensatory response mediated by Wolfram syndrome 1 protein and corticotrophin-releasing hormone family peptides in early-onset intrahepatic cholestasis pregnancy [J]. Placenta, 2019, 83(1): 63-71. DOI: 10.1016/j.placenta.2019.06.378.
|
[45] |
WFS1 is prognostic, high expression is favourable in endometrial cancer [EB/OL]. [2020-01-11].
URL
|
[46] |
Berchuck A, Iversen ES, Lancaster JM, et al. Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers [J]. Clin Cancer Res, 2005, 11(10): 3686-3696. DOI: 10.1158/1078-0432.CCR-04-2398.
|
[47] |
Chao S, Xiao JL, Haizhen W, et al. Lithocholic acid activates mTOR signaling inducing endoplasmic reticulum stress in placenta during intrahepatic cholestasis of pregnancy [J]. Life Sci, 2019, 218(2): 300-307. DOI: 10.1016/j.lfs.2018.12.050.
|