Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2020, Vol. 16 ›› Issue (03): 368 -372. doi: 10.3877/cma.j.issn.1673-5250.2020.03.018

Special Issue:

Review

Values of artificial intelligence breast ultrasound in diagnosis and prognosis assessment of breast carcinoma

Chuanbo Xie1, Qin Man2, Hong Luo3,()   

  1. 1. Department of Ultrasonography, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Department of Ultrasonography, Zigong Hospital of Women and Children Heath Care, Zigong 643000, Sichuan Province, China
    2. Prenatal Diagnosis Center, Zigong Hospital of Women and Children Heath Care, Zigong 643000, Sichuan Province, China
    3. Department of Ultrasonography, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2020-01-03 Revised:2020-05-05 Published:2020-06-01
  • Corresponding author: Hong Luo
  • About author:
    Corresponding author: Luo Hong, Email:
  • Supported by:
    National Key Research & Development Project(2017YFC0113905)

The application of artificial intelligence (AI) breast ultrasonography for diagnosis breast carcinoma and prognosis prediction of breast cancer treatment can not only save time for ultrasound doctors, but also reduce the misdiagnosis and miss diagnosis cause by the lack of experience and skills of beginners. Modern medical imaging is one of the earliest areas where AI plays an important role in clinic. As a cross-sectional imaging technology, breast ultrasound image (BUI) collected by AI breast ultrasonography uses a computer-aided design (CAD) system to perform computer-aided diagnosis of breast cancer, and it can improve the accuracy of clinical diagnosis of breast cancer. Up to now, the intelligent CAD system can help ultrasound doctors more effectively screening early breast cancer. AI breast ultrasound can automatically identify and classify breast cancer lesions, and even simulate clinicians in diagnosis and prognosis prediction of patients with breast cancer. This article focuses on the latest research progresses of diagnosis and prognosis prediction of breast cancer by AI breast ultrasound.

[1]
Siegel R, DeSantis C, Jemal A. Colorectal cancer statistics, 2014 [J]. CA Cancer J Clin, 2014, 64(2): 104-117. DOI: 10.3322/caac.21220.
[2]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 [J]. Int J Cancer, 2015, 136(5): E359-E386. DOI: 10.1002/ijc.29210.
[3]
Wu GG, Zhou LQ, Xu JW, et al. Artificial intelligence in breast ultrasound [J]. World J Radiol, 2019, 11(2): 19. DOI: 10.4329/wjr.v11.i2.19.
[4]
Sepandi M, Taghdir M, Rezaianzadeh A, et al. Assessing breast cancer risk with an artificial neural network [J]. Asian Pac J Cancer Prev, 2018, 19(4): 1017. DOI: 10.22034/APJCP.2018.19.4.1017.
[5]
Zain NM, Chelliah KK. Breast imaging using electrical impedance tomography: correlation of quantitative assessment with visual interpretation [J]. Asian Pac J Cancer Prev, 2014, 15(3): 1327-1331. DOI: 10.7314/APJCP.2014.15.3.1327.
[6]
Shen WC, Chang RF, Moon WK, et al. Breast ultrasound computer-aided diagnosis using BI-RADS features [J]. Acad Radiol, 2007, 14(8): 928-939. DOI: 10.1016/j.acra.2007.04.016.
[7]
EI-Naqa I, Yang Y, Wernick MN, et al. A support vector machine approach for detection of microcalcifications [J]. IEEE Trans Med Imaging, 2002, 21(12): 1552-1563. DOI: 10.1109/TMI.2002.806569.
[8]
Marmot MG, Altman DG, Cameron DA, et al. The benefits and harms of breast cancer screening: an independent review [J]. Br J Cancer, 2013, 108(11): 2205-2240. DOI: 10.1038/bjc.2013.177.
[9]
Ciritsis A, Rossi C, Eberhard M, et al. Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making [J]. Eur Radiol, 2019, 29(10): 5458-5468. DOI: 10.1007/s00330-019-06118-7.
[10]
Fujioka T, Kubota K, Mori M, et al. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network [J]. Jap J Radiol, 2019, 37(6): 466-472. DOI: 10.1007/s11604-019-00831-5.
[11]
吴英,罗良平,许波,等. 基于迁移学习的乳腺肿瘤超声图像智能分类诊断[J]. 中国医学影像技术,2019, 35(3): 42-45. DOI: 10.13929/j.1003-3289.201807052.
[12]
Han S, Kang HK, Jeong JY, et al. A deep learning framework for supporting the classification of breast lesions in ultrasound images [J]. Phys Med Biol, 2017, 62(19): 7714-7728. DOI: 10.1088/1361-6560/aa82ec.
[13]
Lo CM, Chang RF. Intelligent diagnosis of breast cancer based on quantitative B-mode and elastography features//Artificial intelligence in decision support systems for diagnosis in medical imaging [M]. Switzerland: Springer, Cham, 2018: 165-191. DOI: 10.1007/978-3-319-68843-5.
[14]
Moon WK, Chang SC, Huang CS, et al. Breast tumor classification using fuzzy clustering for breast elastography [J]. Ultrasound Med Biol, 2011, 37(5): 700-708. DOI: 10.1016/j.ultrasmedbio.2011.02.003.
[15]
Chang SC, Lai YC, Chou YH, et al. Breast elastography diagnosis based on dynamic sequence features [J]. Med Phys, 2013, 40(2): 022905. DOI: 10.1118/1.4788652.
[16]
Marcomini K, Fleury E, Oliveira V, et al. Evaluation of a computer-aided diagnosis system in the classification of lesions in breast strain elastography imaging [J]. Bioengineering (Basel), 2018, 5(3): 62. DOI: 10.3390/bioengineering5030062.
[17]
Zhang Q, Song S, Xiao Y, et al. Dual-mode artificially-intelligent diagnosis of breast tumours in shear-wave elastography and B-mode ultrasound using deep polynomial networks [J]. Med Eng Phys, 2019, 64(1): 1-6. DOI: 10.1016/j.medengphy.2018.12.005.
[18]
Kelly KM, Dean J, Comulada WS, et al. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts [J]. Eur Radiol, 2010, 20(3): 734-742. DOI: 10.1007/s00330-009-1588-y.
[19]
Moon WK, Shen YW, Huang CS, et al. Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images [J]. Ultrasound Med Biol, 2011, 37(4): 539-548. DOI: 10.1016/j.ultrasmedbio.2011.01.006.
[20]
Lo C, Shen YW, Huang CS, et al. Computer-aided multiview tumor detection for automated whole breast ultrasound [J]. Ultrason Imaging, 2014, 36(1): 3-17. DOI: 10.1177/0161734613507240.
[21]
Chiang TC, Huang YS, Chen RT, et al. Tumor detection in automated breast ultrasound using 3-D CNN and prioritized candidate aggregation [J]. IEEE Trans Med Imaging, 2019, 38(1): 240-249. DOI: 10.1109/tmi.2018.2860257.
[22]
Tran WT, Jerzak K, Lu FI, et al. Personalized breast cancer treatments using artificial intelligence in radiomics and pathomics [J]. J Med Imaging Radiat Sci, 2019, 50(4 Suppl 2): S32-S41. DOI: 10.1016/j.jmir.2019.07.010.
[23]
Nasief HG, Rosado-Mendez IM, Zagzebski JA, et al. A quantitative ultrasound-based multi-parameter classifier for breast masses [J]. Ultrasound Med Biol, 2019, 45(7): 1603-1616. DOI: 10.1016/j.ultrasmedbio.2019.02.025.
[24]
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data [J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[25]
Klimonda Z, Karwat P, Dobruch-Sobczak K, et al. Breast-lesions characterization using quantitative ultrasound features of peritumoral tissue [J]. Sci Rep, 2019, 9(1): 7963. DOI: 10.1038/s41598-019-44376-z.
[26]
Sannachi L, Gangeh M, Tadayyon H, et al. Breast cancer treatment response monitoring using quantitative ultrasound and texture analysis: comparative analysis of analytical models [J]. Transl Oncol, 2019, 12(10): 1271-1281. DOI: 10.1016/j.tranon.2019.06.004.
[27]
Hsu SM, Kuo WH, Kuo FC, et al. Breast tumor classification using different features of quantitative ultrasound parametric images [J]. Int J Comput Assist Radiol Surg, 2019, 14(4): 623-633. DOI: 10.1007/s11548-018-01908-8.
[28]
Sadeghi-Naini A, Sannachi L, Pritchard K, et al. Early prediction of therapy responses and outcomes in breast cancer patients using quantitative ultrasound spectral texture [J]. Oncotarget, 2014, 5(11): 3497-3511. DOI: 10.18632/oncotarget.1950.
[29]
Tadayyon H, Sadeghi-Naini A, Sannachi L, et al. Quantitative ultrasound assessment of tumor responses to chemotherapy using a time-integrated multi-parameter approach [J]. J Acoust Soc Am, 2014, 136(4): 2123-2123. DOI: 10.1121/1.4899647.
[30]
Lassau N, Estienne T, de Vomecourt P, et al. Five simultaneous artificial intelligence data challenges on ultrasound, CT, and MRI [J]. Diagn Intervent Imaging, 2019, 100(4): 199-209. DOI: 10.1016/j.diii.2019.02.001.
[1] Yang Li, Jinyu Cai, Xiaozhi Dang, Wanying Chang, Yan Ju, Yi Gao, Hongping Song. Application value of a deep learning-based model for generating strain elastography images using breast grayscale ultrasound images[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(06): 563-570.
[2] Collaboration Group,Breast Cancer Specialty Committee,Hebei Anti-Cancer Association Nursing. Expert consensus on nursing management of central venous access in breast cancer patients[J]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(06): 321-329.
[3] Chenlu Liu, Jie Liu, Fan Zhang, Caiying Yan, Qian Chen, Shuangqing Chen. Habitat analysis based on enhanced MRI radiomic features in predicting HER-2 expression in breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(06): 339-345.
[4] Xiaoyu Zhang, Yulai Yin, Yinxu Zhang. Efficacy and prognostic analysis of apatinib combined with neoadjuvant chemotherapy in triple negative breast cancer[J]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(06): 346-352.
[5] Lin Qiu, Jinhui Liu, Tuerhong Zumureti, Yuexin Ma, Xiaoling Leng. Diagnostic value of ultrasound radiomics in non-mass breast cancer in dense breasts[J]. Chinese Journal of Breast Disease(Electronic Edition), 2024, 18(06): 353-360.
[6] Li Ye, Yu Du. Application of deep learning in clinical diagnosis and treatment of pulpal and periapical diseases[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(06): 351-356.
[7] Jiehong Gao, Pingping Li, Jing Qi, Yinhai Dai. Study on the relationship between the expression of ETFA gene and clinicopathological parameters and prognosis in breast cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2025, 19(01): 64-67.
[8] Mengmeng Han, Xueyuan Feng, Ning Ma. A case of radial nerve injury after modified radical surgery for breast cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2025, 19(01): 117-118.
[9] Zhizhao Zhang, Rui Wang, Pingping Gao, Chengfang Wang, Cheng Wang, Xiaowei Qi. Relationship between DNMT3B and prognosis of breast cancer and its biological mechanism[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2024, 18(06): 624-629.
[10] Lingyan Wang, Chunhui Gao, Xueyuan Feng, Xinmiao Cui, Huan Liu, Wenming Zhao, Jinku Zhang. Application of circulating tumor cells in neoadjuvant and postoperative adjuvant therapy for breast cancer[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2024, 18(06): 630-633.
[11] Linjuan Zhao, Jie Lv, Wensheng Wang, Demao Ma, Tao Hou. Study on the effect of ultrasound guided resection of stellate and cylindrical lactation preserving areas with staining marks[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2024, 18(06): 634-637.
[12] Ying Xiong, Jinglai Lin, Qi Bai, Jianming Guo, Shuo Wang. How far is AI from clinical application in automated renal cell carcinoma pathological diagnosis?[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(06): 535-540.
[13] Wei Li, Zijian Song, Yancheng Lai, Rui Zhou, Han Wu, Longxin Deng, Rui Chen. The current state and prospects of artificial intelligence applied to prognosis prediction in prostate cancer patients[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(06): 541-546.
[14] Junlong Huang, Wenshuang Li, Xiaoyang Li, bolong Liu, Yilong Chen, Huiping Qiu, Xiangfu Zhou. Application of artificial intelligence model based on pelvic floor ultrasound for the diagnosis of female stress urinary incontinence[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(06): 597-605.
[15] Mingyuan Sun, Heng Chu, Haibin Xu, Zhe Zhang. Progress in application of artificial intelligence in diagnosis of multiple pulmonary nodules[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(08): 785-790.
Viewed
Full text


Abstract